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Abstract-This paper reviews file research and development of process system engineering (PSE) in tile wastewater 
treatment process (WWTP). A diverse range of PSE applications have evolved m tile wastewater treatment process, 
such as modeling, control, estimation, expm system, fault detection and moi~itoring system This arhcle describes sev- 
eral types of PSE that have proven to be effective in WWTR The merits and shortcoming of PSE and its detailed ap- 
plications are presented. Since its development is the forefront m WWTP, a reasonable review of file research progress 
in this field is addressed. 
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INTRODUCTION 

The effluent requirements in WWTP have become increasingly 
stringent and loads on the existing plants have increased These re- 
quire more efficient ~-e~aent methodoI%oy for wastewatei: One 
way to improve process efficiency is by building a new and large 
Ireamlent pla~t, which is non~aally expensive and often impossible 
since the required land or foundation is not available. Another way 
is to inlxoduce advanced techniques. This may reduce large vol- 
v~aes, improve tile effluent water quality, decrease tile use of chem- 
ical, and save energy and operating cost Sustainable solutions to 
the problems of wastewater b-eab~aent will require the development 
of an adequate infon~aation system for control and supervision of 
the process. 

The in~-oduction of PSE such as control, estimatioil, expert sys- 
tem, modeling, optimization, moilit~-ing and diagnostic techniques 
in WWTP has been slow due to the lack of reliable inslrumenta- 
tion and the harsh enviroimlent in which the conlputer and auto- 
marion devices are housed and operated. However, this situation is 
rapicily changing due to advances in sensor technology and the m- 
iroduction of smart sensoi's capable of self-clea~ng, self-calibration 
and self-reconfiguration. Now, there is a trend for an integrated pro- 
cess system engineez-ing starling fi-om the sources of wastewater 
treatment to the receiving water and sludge disposal. 

We f ~ t  desci-ibe and explain the wastewater Ireatment plant, then 
review the applications of modeling, advanced process control, pa- 
rameter estimation, expert system, monitoring and diagnosis in 
WWTP reported in tile literature and used in practice. 

DESCRIPTION OF WASTESVATER 
TREATMENT PROCESS 

Wastewater tre~aent processes aim at renloval of pollutants in 
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the wastewater by tmnsformarion and separation processes. Depend- 
ing oil the cha-acteaistics of the wastewatea; the desired diluent qual- 
ity, and other envirom~aental or secial factors, this can be achieved 
in many different ways.. Traditionally, WWTP ks divided into me- 
chanical, physical, chenlical and biological Ire~nent, which has 
been tailized with many different combmarions. Fig. 1 shows the 
principal layout of a typical pla~t with physical, biological and chem- 
ical ~eatment Physical treatment involves, for instance, screens, 
sedimentation, flotation, filters and membrane techniques. Chemi- 
cal Ireamlent involves coagulation and flecculation of colloidal and 
fmely suspended matter as well as precipitation of some dissolved 
lnattelt 

Biological l~-ecesses are based on biological cultures that consist 
of bacteria, tai-cellular life forms and even some multi-celMar life 
fon~as. Tile orgailic pollt~nts in the wastewater serve as food and 
energy sources for the microbiological culture as it gows. Tile mi- 
crobiologi~il culture can either grow suspended in the water phase or 
in a f~xed position on st~faces such as a bio-fili~a. Suspended growth 
is used in so-called activated sIudge (AS) reactors, while the fixed 
growth is used in f~xed bed reactors. Biological Ire~nent ah~as at a 
certain amount of microbiological culture in the process. In AS reac- 
tors, this is achieved by separaKng the sludge fi-om the water phase 
in a separation unit and then r e ~ n g  the sludge into tile biologi- 
cal reactor. Tile excess sludge created in tile process is removed and 
treated in sludge ~-e~aent processes, which stabilize and dewater 
the sluclge. Stabilization of sludge makes it biologic@ safe and 
often usable as a fertilizer The reduction of olgar~c matter in a bio- 
logical treatment plait can be 90% or more. 

MODELING 

In wastewater treatment, the goals of a trea~nent pIant are to 
achieve an average reduction in nutrient concentrations and good 
effluent quality in spite of the many disturbances. Modeling and 
simulations are key tools in the achievement of these goals. 
1. Mechanistic Model 
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Fig. 1. A c o m m o n  layout  of a wastewater  treatment  plant. 
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A mechanistic modal is based on the actual or believed physics, 
chemistry and microbiology that govern the system. Mechanistic 
models of wastewater l-eatment process aim at describing all bio- 
logical ~vactions and importatt mass balances of the system in such 
a way ffaat the vokanes and the flow rates of the system can be de- 
signed adequately. In order to faithfially describe a biological WWTP, 
a large n~ather of phenomena also have to be taken into consider- 
ation, such as cha-acterization of the influent, hyc~aulics of each 
tank, hydrolysis of different substrates of the influent, removal me- 
chaz~ms of organic materials and sludge clarification-thickening 
mechanisms. 
1-1. Aerator Model 

In 1983, the International Association on VVhter Q~ality (IAWQ) 
fort-ned a task group to develop a practicaI model for the design and 
operation of a biological wastewater treatment facility. The first goal 
was to review the existing models and rite second was to reach an 
agreement concerning the simple mathematical model having the 

capability of predicting the performance of single-sludge syst~ns 
carrying out ca-bon oxidation, nitrification and denitrification. As a 
result~ in 1987, the "Activated Sludge Model (ASIV 0 No. 1" was 
presented [Henze et aL, 1987a, b]. Though the mcdei has been mcd- 
ified and extended, it is still used widely because of its detailed de- 
scription of biomass growth and removal of organic compounds. 

This model ctvided organic and inorganic materials related with 
wastewater tre~nent into 13 components aKt used their mass bai- 
a~ces. All components in the model are expressed in the maNx fon-n. 
The meaning of components, stoichiometric parametei~, chemical 
reaction equation etc. are described in detail in the matrix. Compo- 
nents are largely classified into carbonaceous compo~ads and nitro- 
genous contpounds, and each is divided again into readily biode- 
gradable and slowly biodegradable. ASM No. 1 has four irnpol~nt 
reactions: the growth of biontass (implies oxidation of cadoon cont- 
pounds and ~zit~ification/denilification), decay ofbiomass, and ant- 
monification of organic nitrogen and hydrolysis of partic~flate or- 
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Fig. 2. Schemat ic  d iagram of  I A W Q  A S M  No. 1. 
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ganic matter. The mare emphasis of the model is the biological reac- 
to1; while the settler dynamics is treated compa-atively supe~'ficially. 
Main reactions and inter-relationship of components are ilIus1~ated 
in Fig. 2. 

Recently, sevei~I papers reporting research on biological nutri- 
ent removaI (BNR) process modeling have been pubIished Gujer 
et aI. [1995] extended ASIvl No. 1 for carbon and nitrogen removal 
to include the modeling of biological phosphorus removal. The re- 
sulting ASMNo. 2 included 17 processes and 17 components. Typ- 
ical values of its 40 Idnetic paarnetei~ were listed, although they 
have not been verified from expeffmeis data. In a companion pa- 
per, procedures of wastewater and biomass characterization for use 
with ASM No. 2 have been presented [Henze et ak, 1995]. Mino 
et al. [ 1995] mc~ified ASlVI No. 2 to include the denitrification ca- 
pability of phospho~s-accumulatmg organisms (PAO) by includ- 
ing two new processes: anoxic polyphosphate storage and anoxic 
gro~4h of PAO. The modified model improved the simulation of 
phosphates in the anoxic zone of a BNR plant. ASM No. 2 was also 
modified to be consistent with anoxic P-uptake by including the 
process of denib-ification by PAO using mtemai polyhydi-oxyai- 
kanoates (PHAs) [Issacs et al., 1995a]. Based on pilot-plant phos- 
phate and nitrate data, 46 model paranleters and 19 initial con- 
centrations were identified a_ffer about 2,000 iterations of a randonl 
search algorithm, although most parm-neters were insensitive to the 
data. 

Occasionally, the mcdei sbncb~-e of ASM No. 1, 2 and so on 
requires very complex estimation algori~-ns and it is hard to iden- 
tify theft- numerous paranleters. Jeppsson and O Isson [ 1993] pro- 
posed a reduced order model for on-lhle parameter identification 
of WWTR With a simplified Extended Kalman Filter, 8 basic reac- 
tions and 13 conlponents in IAWQ ASM No. 1 were reduced to 
4 reactions and 10 components. It has been verified against ASM 
No. 1 to investigate whether it incorporates the important dynamic 
phenomena in the actual time scales or not More procedures for 
validation and details can be found in the literature [Jeppsson, 1996]. 
1-2. Secondary Settler Model 

In most previous models, the clafifier has been treated as a pure 
concentrator, sometimes with time delay. More structured models 
that inCOrl:~-~rate both the clarification and the thickening phenom- 
ena have been presented_ However; the dependence of the settling 
parameteis on the biological conditions of the sludge is not sbaight- 
forward. It ks usually assumed fl3at there is no biological activity out, 
side the bioreacto~: There are, however, indications that some bio- 
degradation takes place in the settiei: A secondary setter sepaates 
the biomass flora tile treated wastewater and is a key mechanism 
in operation of biological WWTP The model of the setfler can be 
divided into four categories: f~st, the most general, multi-layer mod- 
el which considers tile settler as a number, n, of horizontal slices 
(layers) with the feed into slice m. Each sIice has a buLk movement 
of liquid and solids either upwards (above the feed) or downwards 
(below the feed). Solids settle into the slice fiom the above and settle 
out of the slice to the below. Second is the settling flux model that 
uses settImg velocity due to gravity force. However, there are some 
limitations in that it has a problem of determining constants in the 
model and it is applicable to the region of zone settIing. ThS-d, the 
claification mode], describes the effluent concentration by using a 
double-exponential form of the flux model. Fot~th, the compart- 

ment model is a simpler approach that considers two well-mixed 
compartments, one above and one below the sludge blanket level. 

Keinath et al. [1977] obtained a settling velocity model that sat- 
isfied the solid flux model and the undertow condition of that the 
downward solid flux is the sum of the gravity settling flux and the 
solid flux due to the bulk movement of the liquid in a conl]nuous 
flow settler. Vitasovic [1986] developed a more rigorous analysis 
of dynamics of the settle~ Vitasovic's model predicts the solids con- 
centrahhon profile in the settler by dividing it into 10 layers of con- 
stant thickness and by perfon-ning a solid balance around each layer. 
However, the model is reasonable only in the hindered settling con- 
dition due to limitation of its settling velocity model. Takflcs et aL 
[1991] classified the settling characteristics into four regions and sug- 
gested a double exponential seNing velocity model in order to take 
all kinds of sedhnentation into account. Dupont and Henze [1992] 
developed a model for the secondary claiifier based on the general 
flux theory that can be used in combination with the activated sludge 
mcdel to fonn a complete dynamic WWTP. In addition to the flux 
model, it includes a simple and purely empiricaI model for predict- 
ing the contents of particulate components in the effluent. Nowa- 
days, a more sophisticated model has been developed. DiehI and 
Jeppsson [1998] proposed a new one-dimensional model based on 
the theory of nonlinear partial different equations and cons~cted 
an entire WWTP model combining the settler model with ASM 
No. 1. 
2. Data-driven Modeling 

To date, the most successful model and the industrial standard is 
the mechai~cal mcdel (ASIvl No. 1, No. 2 and No. 3). Howevei; 
the model structure requires a high dimension and the model pos- 
sesses a large i~-nber of kinetic and stoichiomelric parameters. Some 
subs~-ate components and model parameters are diffictflt to esti- 
mate, partly due to the limitation of available measurement tech- 
niques. And some processes of ASM No. 1, 2 and 3 are theoretical 
in nature and rate equations are difficult. Any particular plant has 
its own process envirormental conditions and process operations, 
which make it difficult to develop an accurate general model. It is 
not easy or desirable to spend considerable time and effort to simu- 
late peculiarities and non-idealities of a process using ASM mod- 
els. As a result, the actual application of such a complex model to 
process control and operational sa-ategies is limited. 

In a black box modeling strategy, the model develol~nent is main- 
Iy driven by measured data from the ac~naI system that has to be 
modeled_ Its main advantage is the fact that, within a reasonable 
amount of time, one can obtain a highly accurate mathema6cal mod- 
el without detailed hlowledge of a system. The applicability ofblack 
box modeEng has greatly increased because of the availability of 
mathematical concepts that can approximate any confnuous non- 
linear function, such as artificial neural networks (ANN), fiJzzy and 
genetic algorithms (GA). 

Capodaglio et al. [1991 ] used neural networks to model the sludge 
volume index (S\q) in order to model forecast sludge bulking, and 
Tyagi and Du [1992] predicted the effect of heavy metals on the 
perfomaance ofWWTE Su and McAvoy [1992] used a l~'allel ~-ain- 
ing approach of recurrent neural neb,vorks to predict biological re- 
moval efficiency in the wastewater Irealment process. Boger [1992] 
reviewed various applications of neural networks in the field of waste- 
water engineering and discussed both advantages and limitations 
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of neural approach_ Roche et al. [1995] developed a secondary clar- 
ifier model that predicted the return sludge concenWation based on 
the settling hychaulic retention time (HRT) by using a shifted power 
model whose coefficients were correlated to the incoming suspended 
solid (SS) and the sludge volume index (SVI). Hack and Kbhne 
[1996] estimated the wastewater process ixtrarneters using neural 
networks. A simplified hybrid neural net approach was applied to 
the modeling and subsequent analysis of a chemical W~WTP to re- 
duce the occun~enees of overflow in the clarifier caused by fila- 
mentous ~ g  and thereby increase wastewater treab-nent capac- 
ity [Miller, 1997]. Hamoda et al. [1999] examined plant dynamics 
and modeling tect~aiques with emphasis on the digital computing 
technology of ANN. Lee mad Park [1999] used the ANN model to 
estsnate the nutrient dyi~nics in a seque~ltially operated batch reac- 
tor. Yoo et al. [20(30] predicted and classified the state of the sec- 
ondmy settler using Kahnan filtering and neural networks. Gontar- 
ski et al. [2000] simulated and predicted an industrial W~WTP using 
ANN. Recently, neural networks have been successfnlly applied to 
biological VV~NTP as well as chemical industries sunmmhzed com- 
prehensively by Hinnnelblau [2000]. 

However, a conventional ANN model sull~-s fiorn the di-awback 
that it is synthesized on the available data, without detailed knowl- 
edge of the underlying principles. When the data are st~se and noisy, 
such an empirical black box model may be inadequate and inaccu- 
rate for prediction1 and exb-apolation because it possesses no physi- 
cal basis. Furthea-more, the ability to learn noupat~netlic approxi- 
mation can lead to over-fitting of the noise as well as the underly- 
Hag functiorL Therefore, it often becomes necessary to implement 
same fore1 of empirical or semiempirical modeling to develop a 
system representation suitable for further mlalyses. The potential 
advm~ges of hybrid modeling approaches relative to a tidily em- 
pirical approach include a reduced demand on expeninental data 
and more reliable extrapolation. Consequently, the alternative of 
using a hybrid model that integrates both a mechanical model and 
ANN appear promising. The serial configtrations used netral net- 
works to represent poorly defined temas in the fn,st-principle model 
(ASM model). For example, material balance on the biological reac- 
tor might yield a set of ordinary differential equations including a 
number of poorly defined kinetic terms (reaction i'ates or kinetic 
parameters of ASM model). In a serial configut-ation one or more 
black boxes would replace these '5ml~aowff' expressions. Thus, 
the neural networks provide intemlediate values necessary for time 
series prediction with the mechanical models represented schemat- 
ically in Fig. 3(a). In parallel an-angements, a dynamic model of the 
wastewatcr treatment system exists, and the effort is to conslruct 
an empirical error model compensating for its fallacies or errors. 
For l~ediction of the dynamic behavior the outputs of the simple 
dynamic model are biased by the outputs of the error model, as in 
Fig. 3('0). Fig. 3 represents a hybrid model configuration incorpo- 
rating prior knowledge into a data-based model with serial hybrid 
model and parallel hybrid model. 

Cote et al. [1995] demonstrated that coupling of mechanic and 
ANN models resulted in improved ammonia and suspended solid 
predictioi~ Dissolved oxygen (DO) prediction was biased since er- 
roncous measurements due to DO probe limitations were not fol- 
lowed closely by the ANN model. Zhao et al. [1997] suggested a 
hybrid model consisting of a simplified process model mad a neural 
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Fig. 3. Hybrid model configuration incorporating prior knowledge 
into a data based model (a) serial hybrid model (b) parallel 
hybrid model. 

network (residual model) for developing a dynamic model of a se- 
quence batch reactor system. Can et al. [1997] reviewed efficient 
model development sWategies for bioprocesses based on neural net- 
work in macroscopic balances. They compared the serial and i~ral - 
lel gray box models that use available knowledge represented it1 
the macroscopic balances mad combined naturally with neural net- 
works. Zhao et al. [1999] modeled the nubient dynamics using sim- 
plified ASM2 and neural network in a sequence batch reacto~: An- 
de~on et aL [2030] used sequential and txwallel hybrid models based 
on the flt-st-pnilciples knowledge of WWTP, which build as much 
prior knowledge as available and then use empirical components 
such as neural networks. Lee [2000] applied the gray box model- 
ing approach to the coke wastewater treatment plant. 
3. Simulation Benchmark 

Many control strategies have been proposed in the litera~tre but 
their evaluation and comparison, either in real-life applications or 
sinmlatlbns, is difficult. This is partly due to the variability of the 
influent, the complexity of the biological and hydrodynamic phe- 
nomena, the large i-ange of lime constants (from a few minutes to 
several days, even weeks), and the lack of standard evaluation1 crite- 
ria. Different regions have different effluent requirements as well 
as different cost levels. To etahance the acceptance of innovative 
control strategies, the evaluation should be based on a rigorous meth- 
odology including a simulation model, plant layout, con/rollei~, per- 
formance criteria and test procedures. To this end, there has been a 
recent effort to develop a standardized simulation protocol - ~ 
lation bencl'znarlg [COST-624, 1997]. The COST 682 Working 
Group No. 2 has developed a benctanark for evaluation of control 
sWategies by simulation. The benchmark is a simulation environ- 
ment defining a plant layout, a simulation model, influent loads, 
test procedures and evaluation criteria For each of these items, com- 
promises were pursued to combine plainness with realism and ac- 
cepted standards. 

A relatively simple layout was selected for the simulation bench- 
mark (see Fig. 4). It combines nitrification with predenitrification, 
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Fig. 4. A layout of simlflation benchmm'k. 
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~hidl is used most commonly for nitrogen renl ow, d. The plata, ~vifich 
was designed to treat an average flow of  20,000 m 3 d -1, consi~s of a 
5-cotnpattment bioreactor and a secondary settler. To increase the 
acceptability of the results, two internationally accepted process 
models were chosen. The biological process is modeled by ASM 
No. 1 [Henze et a~, 1987]. The behavior of the secondary settler is 
modeled by a double exponential settling velocity model, called 
TakS_cs'rr~vdel, with a 10-layer secondary settling tank [Takfics et 
aL, 1991]. Simulated influent data we available in three two-week 
files derived fi'om real operating data The files were generated to 
simulate three weather situations representing dry weather, stormy 
weather (dry weaher+two stotm events), and rainy weather (dry 
weather-}-long rain period). Each of  the data contains 14 days of 
influent data at 15minute sampling intervals. The full benchmark 
model inchdes approxinlately 150 nonlinear differential equations; 
the cotnplete model can be found on a website (http:/A, vv,~,v.ensic.u- 
nancy.fi'/COSTWWTP). 

A basic control strategy is proposed to validate the user's sinm- 
lafion code. That is, prior to def'ming and testing anew comrol slr~- 
egy users must validate their software by inlplementing a prede- 
fined control strategy. Once the user has validated the simulation 
code, any control strategy can be applied and the perfotmance can 
be evaluated according to certain aiteria [Alex eta[, 1999; Pons et 
al., 1999; Coppet aL, 2000; Yoo, 2000; Cho, 2001]. 

CONTROL 

Wastewata" trea~nent plants are large non-linear systems subject 
to pettmbations in flow mid load, together with uncertainties con- 
ceming the composition of the incoming wastev~et: Neva~heless, 
these plants have to be operated continuously, meeting saicter and 
stricter regulations. And effluent standards will become tighter than 
now. There are even indicafiotls in some counlries that tonlotrow's 
regulations must be met on the basis of spot checks, not monthly 
average. In this situafiotl, advanced conlrol is not the answer, but it 
can help. 

But the behavior of biological processes occun~lg in abioreac- 
tot" has a complexity unpm'alleled in the chemical or engineexiug 
industry. Consequently, its prediction fixxn infonnation about the 
enviromnenml conditions is extremely diflkult. The number of tx~lc'- 
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tions and organism species that are involved in file system may be 
very lalge. An accurate de~ription of such conlplex systans can 
therefore result in quite involved models, which may not be useful 
fi~m a control-engineering viewpoint. We can summarize sonle of 
the majot" problems in general: Lacking process knowledge (varia- 
tions of microorganism chmacteristics, hydrolysis, flocculation, set- 
tling chmacteristics), large variations of in_,quent load and unca'- 
tainties in the influent composition (depending on ~veatha, indus- 
trial discharges and toxic material, etc.), multix~iable with many 
cross-couplings, several different unit processes interconnected by 
various internal feedback, macroscopic modeling of nficroscopic 
reacfiotl, highly nonlinear processes, non-s~ationaty processes, thne 
varying process pa'anleta~ (due to the adaptive behaviot" of living 
organisms to various alvirotunental conditiotls)~ stiff" dynamics (a 
wide image of time constants, varying fi'onl a fewminute to several 
days or weeks)~ pmxtically non-controllable and highly variable pro- 
cess inputs, and lack of adequate measuring techniques. In particu- 
lar, flora their inpuffoutput behaviot, these processes can appear to 
be highly stable m~il gross process failure ocoatx On the other hand, 
no significant input digutbance excites any significant output re- 
sponse. Whereas, a very significant response can occur in the ab- 
sence of any obvious mofix~ing input dimabances. By these di- 
stinctive feana'es, WWTP has challenged control engineers [Jepps- 
son, 1996; Lindberg, 1997; Islam et al,  1999]. 

Several advanced conlrol slrat~ies had been developed previ- 
ously, e.g. sliding mode control [I)erdiyok and Levent, 2000], but 
few of  them are reported as appropriate Olsson et al [1989] listed 
the essential variables in the process mid their measurenlem fie- 
quency, hnpottant types of measurenlents and manipulated vm-  
ables are listed in Table 1. 
1. Dissolved Oxygen Control 

Dissolved oxygen (DO) conlrol does not require any in-depth 
knowledge of the microbial dynamics. Therefore, a traditional PI 
conWoller ot" ot#off conlroller has been widely used [Flanagan et 
al., 1977] and there have been extensive experiences of DO con- 
trol with feed-back conlroller [Briggs eta], 1967; Wells, 1979; Ko 
et al., 1982; Stephenson, 1985; Rundqwis% 1986; Holmberg et al., 
1989; Carlsson et al., 1994; Liudbetg and Carlsson, 1996a]. De- 
spite the slraighfforward task of DO dynamics, several difficulties 
are involved. Fkst, DO dynamics contain both nonlinear and time 
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Table 1. Variables for measurement and manipulation 
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Measurement variables ManipuIated variables 

Flow rates in different plant units 
BOD, COD, TOC 
Phosphorus fractions 
Nitrogen in a~mnonia, nitrite and nitrate 
pH 
Suspended solids in different m~its 
Alkalinity 
Temperature 
Dissolved oxygen in different locations 
Air flow rates and air pressure 
Sludge levels 
Sludge flow rates 
Gas flow rates and temperatm-es 
Respiration rate 

Air flow rate and its spatial distribution 
Retmn sludge flow rate 
Waste sludge flow rate 
Influent flow rate 
Additional carbon source flow rate 
Chemical dosage pm-nping rate 
Feeding points for step feed control 

varying properties na0m-ally. From long time constm~ and random 
influent disWxbances, airy tuning of a conventional controller be- 
conies tedious. Therefore, a self-tutKng controller was implemented 
in a fi~i1 scale plant to examine the potential of adaptive conb-ol in 
V~vVTP, where DO concentration is kept very close to its set-point 
under varying operating conditions [Diaz et al., 1995]. Olsson [1992] 
gave an example of cascade cc~-oi concept for DO control. Lee et 
al. [1998a] suggested a discrete type autotuned PI cc~rolIer using 
an auto-regressive exogenous model to ctesc~ibe DO dynamics and 
Yoo et al. [2001] applied a closed-bop auto~xning algorithm for 
the PID controller ~ m l g  of DO control in a full-scale coke waste- 
water treatment plant. Recently, Gomes and Menawat [2000] de- 
veloped a Model-Based Geometric Control Algoritt~n (MGA) for 
controlling DO in femlentation processes. 
2. Sludge Inventol~r Contlx)l 

There are basically two controlled variables for the sludge in- 
ventory in the biological WWTP: the waste activated sludge (VvAS) 
flow rate and returned activated sludge (RAS) flow rate. WAS flow 
rate control cc~m-ols the total sludge mass in the system and the sludge 
retention time (SRT) can be kept at a desired level. The baditional 
sludge age formula is a steady state calculation and does not  take 
short term fluctuations into considerat_iom Therefore, ff should be 
emphasized that the SRT calculaticn has to be based on the sludge 
concentration and flow rates averaged over several days. 

The shdge distribu6on within the system is con~olled by the 
step feed flow distribution or the RAS flow rate. The fomler can 
redistribute the sludge dynamically within the aeration basin while 
the latter can shuffle sludge between the settler and the aeration basin. 
Many contradictory control schemes are made for return sludge flow. 
The recycle flow rate can only redistribute sludge between the set- 
tler and the aeration basin, wtile the total sludge mass of the sys- 
tem remains the same. Two most common practical control princi- 
ples are either constant RAS flow rate or influent flow ratio con- 
trol. The ffxfluent flow ratio control appears to have several ditticul- 
ties and is seldom used consistently. The constant RAS flow strat- 
egy is often found to be better empirically. 

Cakici and Bayramoglu [1995] introduced a control method of 
sludge age and mixed liquor suspended solids (MLSS) concentra- 
tion by adjusting the sludge recycle rate and wastage flow rate, re- 

spectively. For MLSS controi, a conventional PID conb-oiler was 
used in RAS flow rate manipulation, and the sludge in the second- 
ary clafifier was wasted using a microbial mass balance fonnula in 
the the shdge age. N@ari et al. [1999] proposed a non-linem- ad- 
aptive feedback-Iinearizing controller for a biological WWTP based 
on the non-linear model of the process and combined with a joint 
observer and esthnator which plays a role of the so , ra re  sensor 
for on-line estn-nation of biological states and parameter variables 
of  interest. 
3. Respil~meh-y-based Contl~l  

Respironleby is the measurement and interpretation of the re- 
sphation rate of activated sludge. The respiration rate is the amoL~lt 
of oxygen consumed by the micrcorganisms measured per unit vol- 
ume and unit • It reflects two of the most important biochemi- 
cal processes in WWTP, biomass growth and substrate cc~smnp- 
tAon. Respirometiy has been the subject of many studies and a num- 
ber of measurement techniques and instruments have been devei- 

Substrate utilization in an aerobic environment requires oxygen. 
A portion of the consumed subsbate is oxidized to provide the en- 
ergy requh-ed to reorganize, and the remainder of the substrate moI- 
ecLdes is COlwerted to new bacteflal ceil mass [Spanjers et ai., 1996]. 
The rate of oxygen consumption can be measured relatively easily 
by measuring physical variables like DO or carbonaceous material 
by heterotrophic bacteria and the oxidation of ammonia ni~-ogen to 
nitrate nitrogen by autotrophic bacteria. Nitrification often accoutKs 
for approximately 40% of the total oxygen demand. The substrates 
have various biodegmdation kinetics @ending an their inherent 
characteristics and the responsible sludge condition, e.g., mineral- 
iTation of carbonaceous compounds diffels from that of nitrogenous 
substrates, and in the carbonaceous matteis the sane degradation 
pattern is not shown according to their molecular structures. Called 
the bisubstrates hypothesis, it was introak~ced first in the UCT (Uni- 
versity of Cape Town) model [Dold et aI., 1991]. According to the 
hypothesis, BOD in the influent waste stream can be regarded as 
two fractious: one is readily biodegradable substrate (RBS), which 
has a simple molecular structure and is able to laSS thro~,h the ceil 
wall immediately for microbial metabolism, and the other is slowly 
biodegradable substrate (SBS), which was assimilated in a fonn of 
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RIBS through extracellular enzymatic reaction, called hydrolysis 
[Ekama and Marais, 197 9]. 

Since the respiration rate is directly linked to the growth of bacte- 
ria and consumed substrates, it has been used to analyze microbial 
conditions of VV~NTP in a form of respirogl"am that is a graphical 
description of respiration rate as a fimction of time [Kappeler and 
Oujer, 1992; Spanjers and Keesman, 1994; Spanjers and Vallrol- 
leghem, 1995; Dochain et al., 1998; "vknroll~hem et al., 1995, 1998]. 

Furthermore, the respiration rate can be decomposed into exog- 
enous and endogenous parts, in which this comes from ai1 adenos- 
ine tfi-phosphate (ATP) oxidation in microorganisms and that from 
the extemal substrate oxidation. The change of the rate relies main- 
ly on its exogenous part since the endogenous respiration rate sus- 
tains a constant level in a short time experh-nent [Kong et al., 1996]. 
Hence, tile analysis of exogenous respiration rate has been used for 
the identification of the characteristics of substrates mad microor- 
ganisms [Brower et al., 1998; Spanjers et al., 1999]. 
4. Advanced Nutrient Removal  Control 

Nitrogen and phosphoms are the principal nu~ients of concern 
in treated wastewater disct~aiges. Disctlalges containing nitrogen 
and phosphorus may accelerate the eutrophicaion of lakes and re- 
servoirs and may stimulate the g r o ~ h  of algae and rooted aquatic 
plants in shallow streams. Significant concei~-ations of nitrogen in 
the treated effluents may also have other adverse effects including 
DO depletion in receiv iug waters, exhibiting toxicity toward aquatic 
life, affecting chlorine disinfection efficiency, presentffg a public 
health hazard, and affecting the suitability of wastewater for reuse. 
Therefore, tile control of nitrogen and phosphot~ts is becoming in- 
creasHlgly important in water quality management and in the design 
of WSYTP [Lee et al., 1998b; 57oo, 2000; Cho, 2001]. 
4-1. Model-based Control 

The development of advanced ntmient analyzers t~s made it pos- 
sible to introduce better control. In biological nitrogen and phos- 
phorus removal, malty factors hffluence the reaction rates, such as 
the amount of micloorgalmms, temperature, subsn-ate composition 
and concenb-ation. There are only a few ways to influence the ni- 
trification/denitfification rates in practice: One is to adjust the DO 
set point for ammonia removal in the aeration zone; another Ls to 
control tile dosage of external carbon for nib-ate removal. Phospho- 
rus can be removed by controlling the dosage of chemicals for phos- 
phorus precipitation. 

Mairy papers have dealt with the problem of removal of nitro- 
gen compound. Henze [1991 ] discussed capabilities of biological 
nitrogen removal process for wastewater treamlent and suggested 
that the most economic configuration for nitrogen removal should 
be the pledenitrification system. Reeent approaches to the problem of 
nitrate removal by exten~al carbon source can be fotmd. Lindbeig 
and Carlsson [1996b] proposed an adaptive control stt'ategy using 
auto-regressive moving average with exogenous input (ARMAX) 
model with recursive least square method for parameter estimatior~ 
Yuan et al. [1997] suggested various control s~'ategies using pro- 
portional feedback controller with some assumption and modifica- 
tion of ASM No. 1. To design the controller and determine the op- 
timal set point, they added the dynamics of an external carbon source 
to the denitrification model in ASM No. 1. Barros and Carlsson 
[1998] developed an iterative pole placement design method of a 
nitrate cor~oller. The closed-loop model of the process could be 

obtained from input/output data dudng iterative design procedure. 
4-2. Multivariable Control 

Above previous researches focused on single input single output 
(SISO) process control. Some examples ofmultivariable control of 
the wastewater trea~nent process can be fo~ald in Bastin and Doch- 
am [1990], Dochain and Perrier [1993], and so on. Lindberg [1997, 
1998] suggested multivariable modeling and coi~ol smategy of nu- 
trient removal in WWTP using numerical algorithms for subspace 
state space system identification (N4SID) that can identify multi- 
variable processes [Van Overschee and De Moot; 1996]. Frona the 
multi-input multi-output (MIMO) process model, Lindberg [1997] 
developed a linear quadratic (LQ) controller with integration of feed- 
forward and feedback controller. Steffens and Lant [1999] evaluated 
several multivariable model-based control algori~-ns, such as linear 
quadi~atic controller (LQC), dynamic matrix controller (DMC) and 
nonlinear predictive controller (NPC) for controlling nitrogen re- 
moval in WWTP and compared that with a conventional PI con- 
troller of the SISO system. They concluded that model-based con- 
trol algoritl~-ns could provide tight control of nitrogen compound 
removal aiM olt'el- significant benefits in terms of defened capital 
expenditure. 

On the other hand, Isaacs and Henze [1995] and Isaacs et al. 
[1995] dealt with the problem of nutrient removal coim-ol in an al- 
ternating nlFification/denitrification process. Lukasse et al. [1998] 
developed an aeration strategy for optimal nitrogen removal in al- 
te111ating nitrification/denittification process. First. optffnal control 
theory was applied to ASM No. 1, and then, from the result of the 
fu-st simulation, a simple discrete model which could replace com- 
plex ASM No. 1 was created to design a receding horizon optimal 
controller. It revealed that it is impossible to control both anmaonia 
and nitrate to their set poir~s as their constrnptiotfptoduction is com- 
pletely coupled. 

PARAMETER AND STATE ESTIMATION 

As previously described, WWTP is a complex dynamic process 
itNuenced by many uncertain factors, such as loading and biomass 
composition. Successful process control requires good knowledge 
of process variables such as the most iniluential kinetic and stoictfi- 
ome~ic parameters and resulting biot-nass composition. Model pa- 
rameters and state estimation are based on available noisy process 
measuremer~s. The pal-ametei's of biological models usually vary 
with the envirorrnental conditions and need to be updated frequently 
ff~-ough on-line and off-line algorittmls. Tracking of txtrametet~ val- 
ues is also usefi~l for detection of toxic ilTput mad on-line sensor fail- 
ures and sudden pal-ameter changes. The need of state estimation 
alises in connection to state-feedback control schemes. Process var- 
iables that al'e not monitored due to unavailable or expensive sen- 
sors can be estimated or reconstructed numerically. Even in the case 
where process measurements are available, estimation algot-ithms 
al'e still necessary to optimally weigh the uncertainty of the process 
model with measurement aeetaacy and generate a more accurate 
state variable esNnate [Bastin mad Dochain, 1990; Kabouris, 1994]. 

It is well known that particular problems of model identification 
in w \ v r P  involve the highly notllinear nature of the dynamics, the 
small sensitivity of the state valiables and the inability of measur- 
ing individual process variables reliably. 
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Goto and Andrew [1985] presented on-Iine estimation of oxy- 
gen uptake rate fi-om DO mass balance in a cornplete mixed aera- 
tion basin, neglectiig DO time derivative and measuring air and 
water flo~'ates and DO concentratioi1 Howell and Sodipo [1985] 
estimated on-line respiration rate and aeration etticiency by a factor- 
ized Kahnan filter algoritt~-n. OIsson and Chapman [1 985] used the 
Maximum Likelihood method to estimate the parameters of a time 
invmiant linear stochastic difference equation describing claifica- 
tion of effluent solid dynanics. In the case of time-varying p a ~ n  - 
eters, they used the Extended Least Square method in modelLng of 
the effluent solids response of a pilot scale settler Holi~nbe~g and 
Olsson [1989] smmltaneously estimated OUR and aeiation coeffi- 
ciencies using Kah~nan filter methoct Ma~ili-Libelli [19fX)] designed 
and evaluated a real-tsne estimator both for oxygen uptake rate 
and for oxygen transfer rate coeti]cier~s. Ayesa et al. [1991] used 
an Extended K~knan filter (EKF) algorithm to simultaneously esti- 
mate the states and parameters of ASIvl No. 1 for nibifying WWTP, 
including a selector reactor, and Larrea et al. [1992] attempted the 
simultaneous estimation of nine model parameters. Weijer et al. 
[1996] reviewed the recent literature on calibration s~:ategies and 
methods for assessing parameter identifiability of ASIvl 1 and pre- 
sented the icte~tifiability results for full-scale plants by a con~bined 
analysis of the parameter sensitivity and the Fisher information matrix. 

Recently, Kabotais and Georgakakos [1996a, b, c] reviewed the 
parameter and state estimation of VV~VTP about model develop- 
met~ application and on-line esthnatior~ Tenno and Uronen [1995, 
1996] itm-oduced a stochastic model based on an ASM model and 
the outIet gas fon-nation descriptior~ Suescnn et aI. [1998] pro- 
posed a simultaneous estsnation of the volonte~ic mass transfer 
coefficient and oxygen uptake rate and validated the experimental 
results in a continuous pilot-scaIe plant. Jose et aI. [1999] prol:csed 
a neural network-based itfferential sensor for phenol monitorizg 
using on-line biontass concent~-ation by spectrophotomet~y, where 
the network was built with wavelets as a basis function and the 
adaptive algofiffmt for the weights was based on a Lyapunov stabil- 
ity analysis, l:~-edicted output of the network showed a good agree- 
ment with experime~l data over faMy broad ranges of iniet con- 
ce~-ation and dilution rate step changes. Assis and Filho [2000] re- 
viewed the sof[ sensor technologies for on-line bioreactor state esti- 
mation, such as ada-ptive obsel~,e~; filtering techi~iques and artificial 
neural networks and predicted trends on on-line sotGv~-e based state 
estimation. Yoo and Lee [2001] suggested and experimented with 
a supervisory conb-oi basel on simultaneous process identification 
and/n-s~tu estimation of respiration rate in a full-scaIe wastewater 
trea~nent plant. 

EXPERT SYSTEM 

An expert system provides expert solutions to problems in a spe- 
cific domain, but it is limited by the information contained in its 
database. Hence, it is up to the knowledge engineer and the expert 
to work together to gather the conect hlfon-nation and inference 
rules contained in the knowledge base. 

A typical expert sys~-n consists of two sel:~-ate entities: a knowl- 
edge base and a control system. The knowledge base contains (1) 
a listing of ruies that solve the problems of the given domain, (2) 
specific data, or the facts, conclusions, and other relevant infonna- 

tion, and (3) a knowledge base editor that accesses the explanation 
subsystem and helps the programmer locate bugs in the program 
performance. It may also assist in adding new knowledge, ma~l- 
taining con'ect rule syntax, and checking consistency on an updated 
knowledge base. The conlrol system generally has (1) a user inter- 
face which makes access to the expert system more comfortable 
for humans and hides much of the system complexity, (2) an ex- 
planaticn subsystem that a11ows the program to explain its reason- 
izg to the user, such as justifications for the systems conclusions, 
and why the system needs a Farticular piece of data, and (3) an in- 
ference engine, or the interpreter of the hlowledge base. It applies 
the knowledge to the solution of  the actual problems. 

Stephan and Anthony [1991 ] designed an expert system for water 
b-eabnent plants and applied it to a plant in New York. Watanabe 
et aI. [1993] proposed intelligent operation support system (IO SS) 
for bulkiug prediction and control for WWTP with on-line process 
data and image signals on microbes; the data and signals come from 
a submerged high resol~ion microscope. In their research, the mles 
of the expert system were produced fi-om t~toiical data by using 
artificiaI netwaI networks. Wang [1996] used the decision-support- 
ing system (DSS) in city water supply. DSS was designed to op- 
erate with an SCADA syste~n connected to a telephone line. He sug- 
gested a triple hierarchy to infer the result of the sy~em. The first 
hierarchy is used for data processing, the second is for data analy- 
sis, and the fmai is for reason driving with the library of l~lowi- 
edge base. Medsker [1996] presented a hybrid intelligent system 
with microcomputer and compared it to a neural network, expert 
system, fazzy logic, genetic algorithms and case-based reasoning. 
He forecasted that the microcomputer-based tryb~id intelligent system 
became more effective and economical. Baeza et al. [1999] sug- 
gested a real time expert systern (RTES) for the supervision and con- 
b-oi of VV~vVTP for removal both organic matter and nubient. He 
used PLC for process coi~-ol and G2 TM for RTES development. 
RTES was designed to actuate as the master in a supervisory set- 
point conboi scheme and k is based on a disbibL~ed arctfitec~-e. 
The method was irnplemented in WWTP for 6(X) days, and excel- 
leilt perfonnance was reported to manage the process in spite of 
strong disKubances. 

MONITORING AND DIAGNOSIS 

Process monitoring of operating performance is extremely im- 
portant for plaxlt safety and quality maintenance in a process. It is 
largely divided into two main approaches such as model-based and 
data-based. The former makes mathematical models to identify the 
static and dynamic relationships of processes and so it is usefui ifa 
process is rather simple, but not useful if processes have severe non- 
linearity, high dimensionality and complexity. On the contrary, the 
latter makes stagstical guideline based on historical data in non-naI 
operation conditions, so it is available without process characteris- 
tics if there are enough available data. 

The moilitodng problem largely consists of thi-ee sequential parts: 
data rectitication, detection, and diagnosis. Fig. 5 illustrates the mon- 
itoring scheme for the plant. Data rectification means the screeiKng 
of available data to remove redundant infon-nation. Olsson and Ne- 
well [1999] defined the detection as a combination of process ob- 
sel~ations and measurements, data analysis and interpretation to de- 
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Fig. 5. Monitoring scheme for the plant 

tect abnormal features Ol- effects and the isolation of faults. Diagno- 
sLs involves the analysis of effecls to ideiNfy and rank likely causes. 
The advice involves the problem of synthesizing strategies to elimi- 
nate tile causes and retuli1 the process to normal opea-atitg cwlditions. 

Only a few researchers have been interested in process monitoiitg 
in WWTP Monitoring in wastewater treatment has mostly focused 
on a few key effluent qt~ltities upon which regulations are eifforced. 
However, since environmental restrictions are becoming more rigid 
nowadays, an increased effort for higher efflueut quality is required 
in the advanced monitoring of plant performance. 

Monitoring of WWTP is very important because recovery frc~n 
failures is tram-consuming and expensive. That is, most of  tile 
changes in biological treatrnent process are very sluggish when the 
process is recovered back fi-om a 'bad' state to a ~ state or 
back from a 'bad' state to a ~ state. Therefore, early fault de- 
tection mad isolation in the biological process is very important as 
corrective action well before a dangerous situation happens. At tile 
same time discrimination between serious mad minor abnomaality 
Ls of p~Smary concern To accomplish these classifications, a reli- 
able detection procedure is neede& However, few monitoring tech- 
rn~tues are available to utilize the large on-line data sets despite the 
increasing popularity and decreasing price of on-line measuremeut 
systems in the field of  the wastewater treatment system. 

A wastewater tre~-nent pNnt is a very complex system includ- 
ing a great deal of equipment and complex processes. Tile operators 
are under increasing regulatory pressure to reduce pol l~nt  levels 
in their effluent One response to this has been the installation of 
extensive on-line sampling capable of measuring flow rates, concen- 
tratic~ls and other variables frequently. Data acquisition systems may 
collect a large amot~at of data, normally tens of process and control 
variables, but there are relatively few sigiaificant events. Therefore, 
the data fi'ona all the measurements should be mapped into a sig- 
nificant description of the current process. The obtained data will 
give much process infommtion, if only the important and relevant 
information can be extracted and interpreted Not only are there many 
valqables to be considered, but also they are often highly cross-cor- 
related (~e., the measured vmables are not independent of one an- 
other) and auto-correlated. So, redundancy that variables carry the 

same infbrmation at least to some extent is observed It is desirable 
to develop schemes for providing reliable on-line reformation on 
the status of the plant so that early corrective actions may be taken. 

Traditionally, statistical process control (SPC) has been used to 
monitor a few quah~y-related key process signals to detect trends, 
outliers and other anomalies. The term "SPC'" is often confused with 
process control. SPC, however, is more rented to tile process moni- 
toring, and therefore the tenn "statistical process monitoring" (SPM) 
is often used instead of SPC. Shewhart, cumulative sun (CUSUM) 
and r cponent ia l ly  weighted moving average (ETWIvIA) are tradi- 
tional univariate SPC charts. The use of univariate control charts 
implicitly assumes that the variables are independent and identi- 
cally disthbuted (rid). For this reason, these procedures are of lim- 
ited use with high-dimensional multivariate data that are strongly 
cross-correlated and auto-con'elated, dynamic, multiple Ikne-scale, 
non-stationary and noisy. That is, as the number of variables mad 
the exteilt of collinearity increase, the interpretation of these univari- 
ate control charts can lead to false conclusions [Rosen, 1998; TeD 
pola, 1999]. 

Multivariate statistical process control (MSPC) is a possible solu- 
tion to dimemionality and collinearity problems. Contrary to tmivari- 
ate teclmiques, multivariate techniques are more successful solutions 
to moraior the process data having severe collinearity and noise. 
They cc~ltam such methods as principal components analysis (PCA) 
or partial least squares (PLS) combined with standard sorts of con- 
trol ctaarts. These methods are the basis of the field of chemomet- 
rio's, which has traditionally been concemed with multivariate an- 
alyses in chelnistry, particularly those of spectroscopy. These have 
also been used widely in m&lstrial process monitoring over the past 
several decades. PCA mad PLS aim to represent a multivariate set 
of measurements with a smaller number of variables. These trans- 
fonned variables are linear combinations of the original ones. These 
methods have been used and extended in various applications [Geladi 
mad Kowalski, 1986; Johnson and Wichem, 1992; MacGregor et 
al., 1995; Wise mad GaHaghei; 1996; Chen mad McAvoy, 1998; Liu 
et al., 2000]. 

With the use of multivmiate data analytical methods, the exten- 
sion fi-om tuaivariate to multivariate control charts is very logical. 
Because the raultivaniate scores are orthogonal mathematically and 
they give the optimal summary of measurements and observations, 
they are ideally suited for displaying in control charts [Wikstr6m et 
al., 1998]. The scores are also more robust to noise than original 
variables since they are linearly weighted averages. This allows a 
more effideut pattern tracking of tile process over time for detect- 
ing abnormalities mad for def~mag the time when they occur. Mul- 
tivariate control charts have been explained in detail by MacGre- 
gor and Kourti [1994]. 

The multivariate Shewt~rt charts are constructed smaply by plot- 
ting the appropriate quantity vs. time. Those of scores show how 
the process evolves over time in the respective principal component 
Meanwhile, a Shewart chart of Hotelling's T 2 indicates a summary 
of all scores. The multivariate CUSUM charts are only available 
for scores. In these charts cumulative sums of deviatiom fi-om the 
target values are calculated and visualized, then all observation are 
used to detect a special event, rather than only the last observatiort 
The EWMA charts are used to model process dyna-nics with me~-n- 
ory and drift They show robust and filtered values through weight- 
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nag more heavily to recent than old observations. These three kinds 
of control charts only show if the systematic part of an observation 
conforms the model. However, if a new type of event occurs and 
gives data that are not represented in the trahKng set, tile model will 
not fit these new data well and hence leave much of this observa- 
tion unmodelled Therefore, we often use simultaneous scores mon- 
itoring and residual tracking (SMART) charts to identJify how the 
model fits cun'ent data well. They represent tmle series patterns of 
model residuals. 

Besides the dimensionality and collinearity problems, process dam 
often coilsist ofma W underlying phenomena that create theft" oven 
variation and scale. Tile measured signal can be often very messy 
because some phenomena mask others. So, it is hard to observe tile 
long-term diift of signal such as seasonal fluctuation having low 
frequency. In most sitnations, the objective is to iderNfy transient 
phenomena such as faults and disturtxmces. However, there also 
exist applications where the detection of long-teml disturl~ances 
such as drifting and seasonal fluctuations is hnportant. A filtering 
approach can give a possible solution for tiffs problem. Tile origi- 
nal data are compressed and analyzed at different scales by using 
rnulNesolution analysis [Teppola, 1999]. Tile corresponding scale 
representation shows different phenomena occtaTing at different 
rates. Mutiresolution analysis enables one not only to show the un- 
derlying phenomena but also to filter out unwanted and disan-bing 
phenonlena. In addition, proper clustering methods help one to dis- 
criminate different scale events. 

Applications of MSPC in the biological process have recently 
drawn great interest by a few researchers. Krofta et al. [1995] ap- 
plied tile analysis tectmiques for dissolved air flotatioi1 Rosen [1998] 
adapted multiv~Jate statistics-kased methcxls to tile wastewater treat- 
ment monltorhlg system using shnulated and real process data. Van 
Dongen and Geuens [1998] illustrated that multivaiJate time series 
analysis can be a valid alternative of the dynamic lnodeling in 
VV'vVTR Teppola [1999] used a combined approach of multivariate 
tecimiques, fuzzy arid possibilistic clustering, and multiresolution 
analysis for wastewater data monitoring. Tomita et al. [2000] ap- 
plied multivariate analysis in the simulated W~VVTP and detected 
three groups of variables characterizing the system. 

However, tile multivariate statistical analysis method has funda- 
mental weak points in the nutrient removal process. Tile nutrient 
removal process is non-stationary, which me~ls that tile process 
itself changes gm&kally over time. Whstewater trealment plants are 
hardly ever ~176 operated for long periods, and what ~176 
reality" me~ls also changes because of the nonstationafity. So, con- 
ventional static PCA is not suited for non-stationary process morn- 
toting as it assumes data are i.i.d and they are obtained from a nor- 
mal operating condition for a particular process. This is a problem 
for developing statistical control charts as they should be developed 
from a set of"nomlal" operating data. 

Issues that need to be addressed, particularly in relation to WWTP, 
are the selection and transformation of data, model sb-ucture and 
sm-nplmg intervah. Fh~t, to implement dynamic and adaptive data 
based models, the methods of selecting and transforming data are 
requs"ed [Ku et al., 1995]. IdeaUy, these should demand a mini- 
mum of process knowledge. Second, adaptive algorithms for MSPC 
show potential for non-stationary processes. While adaptive algo- 
rithms have been developed [Dayal and MacGregor, 1997; Qin, 
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1998; Li et at., 2000], there has been little research on the problems 
of application to industrial processes. Third, the choice of sampling 
interval strongly affects the nature of the data and hence the model. 
There is a very wide :ange of dynamics in WWTP That is, while 
some measurements are taken many times per minute, some are 
taken only every fifteen minutes. Quality measureme~s may be 
taken once a day or even less frequently (mulfrate sampling). It 
may be possible to block variables sampled at the same frequency 
and develop a multi-block model. Another possibility is to use a 
multiscale model through the use of wavelet transforms [Bakshi, 
1998]. In addition, extetxsions of MSPC to monitor more complex 
or batch p1~ocesses are made with the multiblock PCA, PLS or mul- 
tiway PCA, PLS, respectively [MacGregor et al., 1994; Ncmikos 
ancl MacGregor, 1994]. These monitoiing mettlods are based on 
the traditional statistical analytical approach using Hotelling's T 2 or 
sual of squared prediction error (SPE or Q statistics). T 2 andQ sta- 
tistics nlcthods provide reliable and correct tools for detecthg that 
multivariable process has gone out-of-control. However, these meth- 
ods do not always work well in W~NTP, because they car~lot de- 
tect airy changes in the operating condition if T 2 and Q are inside 
the coiffidence lhnits. Therefore, a new monitoring method may be 
required that can effectively treat the nonstationarity of tile character- 
istics of the biological treatment process and diagnose source causes. 

Meanwhile, it is an important issue to diagnose the source causes 
for abtlc~mal behavior. Chemonletfic methods such as PCA and PLS 
have been utilized for merging detection with diagnosis of source 
causes of abnormal situations [Ku et at., 1995; Raidl and Cff~, 1995; 
Ct~ang et al., 2000; Russel et at., 2000]. Ku et al. [1995] proposed 
a diagnostic method in which the out-of-control observation was 
compared to PCA models for known disturbances. Using refine- 
ments of statistical disturbances, discrmlinant analysis then selects 
the most likely causes of the current out-of-control conclitioi1 Suc- 
cessful diagnosis depends on the discrimination ability of these dis- 
turbance models. Raich and CiI~- [1995] suggested quantitative tools 
that evaluated overlap and similarity between the PCA model and 
discrmlinant analysis in order to diagnose the source causes for ab- 
normal behavicc Chiang et al. [2000] compared the fault diagnosis 
methods using dismminant partial least squares (DPLS), Fisher 
disctiminant mlalysis (FDA) and PCA. They showed that FDA and 
DPLS are more proficient than PCA for diagnosing faults. Russel 
et at. [2000] proposed a f~lt  detection method using canonical var- 
iate analysis and dynamic component analysis. Recently, Kano et 
at. [20000. b] proposed a new statistical process-monitoring algo- 
rithm. It is hesed on the idea that a change of operating condition 
can be detected by monitoring the disWibufon of thne-series pro- 
cess data because the distribution reflects the corresponding operat- 
ing conditiorL However, they did not consider an individnal con- 
tribt~Cion of each transformed constituent in the calculation of dis- 
similarity index th'ough normalization. Choi et al. [2001] proposed 
a modified dissimilarity measure algorithm to consider the effect 
of individual transformed variables. This method is used for detect- 
ing the existence of disturbances as well as for isolation of kinds of 
disturbances through eig env alue monitoring. 

C O N C L U S I O N  

Process system engineering techniques such as modeling, con- 
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trol, estlmatic~, expert system, and momtormg and diagnosis sys- 
tem m the wastewater treatment plant are sigi~ficantly under de- 
velopment and have given very real economic benefits to be gained. 
In this paper, we have reviewed many papers about PSE tech- 
tuques in the field of wastewater treatment plants. Among them, 
however, onIy a few techniques have been reported to work suc- 
cessfully in real wastewater tre~nent plants, whiIe manifold mon- 
itoring and control strategies have been developed and adopted to 
the mechanical, chemical and electronic industries. One of the inher- 
ent differences in the wastewater tre~nent plant and the other phy- 
siochemical industries is that the microorganisms, which played an 
important roIe in wastewater treatment process, are Iivnag creatures 
with various vitaI forces according to the surrounding conditiom. 
Therefore, the cell viability should be regarded as an essential factor 
for the wastewater treatment process opeiaion because it is strongly 
correlated with the process perfon-nance. One of the possible can- 
didate to check the actMty of micrcorganisms is the respirometer 
as we discussed in Respirometry-based control. In addition, rite re- 
spiratkxl rate has been used for bio-modeI calibration, toxicant inhi- 
bition test, substmte state obsen, ation and biokinetic analysis be- 
tween biodegradable poliutants and corresponding microbes. 

Another further research topic on PSE issues is the design of an 
integrating operation system on wastewater treatme~tt plants. How- 
ever, since PSE technologies have borne fiaxitfuI results individually, 
it is th-ne to consider that a plant-wide operating system should be 
developed. Integm_tion of possible PSE tedmiques can be expected 
to play a significant role in management of wastewater treatment 
industry tt~otgh reducing operation cost and eithancing the efflu- 
ent quality. 

In essence, we contend that PSE tect~liques will be a critical tech- 
nology for meeting the increasingly stringent effluent req~grements 
in the wastewater treatment industry over the next decade. 
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