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Abstract—This paper reviews the research and development of process system engineering (PSE) in the wastewater
treatment process (WWTP). A diverse range of PSE applications have evolved in the wastewater treatment process,
such as modeling, control, estimation, expert system, fault detection and monitoring system. This article describes sev-
eral types of PSE that have proven to be effective in WWTP. The merits and shortcoming of PSE and its detailed ap-
plications are presented. Since its development 1s the forefront in WWTP, a reasonable review of the research progress

in this field 1s addressed.
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INTRODUCTION

The effluent requirements m WWTP have become mereasingly
strmgent and loads on the existmg plants have increased. These re-
quire more efficient treatment methodology for wastewater One
way to imnprove process efficiency is by building a new and large
treatment plant, which 1s normally expensive and often mpossible
since the required land or foundation 1s not available. Another way
1s to mtroduce advanced techniques. This may reduce large vol-
umes, mprove the effluent water quality, decrease the use of chem-
ical, and save energy and operating cost Sustamnable solutions to
the problems of wastewater treatment will require the development
of an adequate mformation system for control and supervision of
the process.

The mtroduction of PSE such as control, estimation, expert sys-
tem, modelmg, optmization, monitormg and diagnostic technicques
m WWTP has been slow due to the lack of reliable mstrumenta-
tion and the harsh environment m which the computer and auto-
mation devices are housed and operated. However, this situation is
rapidly changmg due to advances m sensor technology and the m-
troduction of smart sensors capable of self-cleanng, self-calibration
and self-reconfiguration. Now, there 1s a trend for an mtegrated pro-
cess system engineering starting from the sources of wastewater
treatment to the receiving water and sludge disposal.

We first describe and explain the wastewater treatment plant, then
review the applications of modeling, advanced process control, pa-
rameter estimation, expert system, momnitoring and diagnosis in
WWTP reported m the literature and used m practice.

DESCRIPTION OF WASTEWATER
TREATMENT PROCESS

Wastewater treatment processes am at removal of pollutants
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the westewater by transformation and separation processes. Depend-
mg on the characteristics of the wastewater, the desred effluent qual-
ity, and other environmental or social factors, this can be achieved
i many different ways.. Traditionally, WWTP 15 divided into me-
chamcal, physical, chemical and biological treatment, whuch has
been utilized with many different combinations. Fig. 1 shows the
prmeipal layout of a typical plent with physical, biological and chem-
ical treatment. Physical treatment involves, for mstance, screens,
sedimentation, flotation, filters and membrane techmques. Chemi-
cal treatment mvolves coagulation and flocculation of colloidal and
finely suspended matter as well as precipitation of some dissolved
matter

Biological processes are based on biological cultures that consist
of bacteria, unu-cellular life forms and even some multi-cellular life
forms. The organic pollutants n the wastewater serve as food and
energy sources for the microbiological culture as it grows. The mi-
crobiological culture can either grow suspended in the water phase or
m a fixed position on surfaces such as a bio-film. Suspended growth
1s used 1n so-called activated sludge (AS) reactors, while the fixed
growth 1s used m fixed bed reactors. Biological treatment amms at a
certam amount of microbiological culture m the process. In AS reac-
tors, this 1s achieved by separating the sludge from the water phase
m a separation unit and then returning the sludge mto the biologi-
cal reactor. The excess sludge created m the process 1s removed and
treated m sludge treatment processes, which stabilize and dewater
the sludge. Stabilization of sludge makes it biologically safe and
often usable as a fertiizer. The reduction of organic matter in a bio-
logical treatment plant can be 90% or more.

MODELING

In wastewater treatment, the goals of a treatment plant are to
achieve an average reduction m nutrient concentrations and good
effluent quality m spite of the many disturbances. Modeling and
simulations are key tools in the achievement of these goals.

1. Mechanistic Model
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Fig.1. A common layout of a wastewater treatment plant.

A mechanistic model is based on the actual or believed physics,
chemistry and microbiology that govern the system. Mecharustic
models of wastewater treatment process aim at describing all bio-
logical reactions and mportent mass balances of the system m such
a way that the volumes and the flow rates of the system cen be de-
signed adequately. Tn order to faithfully describe a biological WWTP,
a large number of phenomena also have to be taken mto consider-
atiory, such as characterization of the mfluent, hydraulics of each
tank, hydrolysis of different substrates of the nfluent, removal me-
chamsms of organic materials and sludge clanfication-thickering
mechanisms.

1-1. Aerator Model

I 1983, the Intemational Association on Water Quality (IAWQ)
formed a task group to develop a practical model for the design and
operation of a biological westewater treatment facility. The first goal
was to review the existing models and the second was to reach an
agreement concemning the simple mathematical model having the
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capability of predicting the performance of single-sludge systems
carrying out carbon oxidation, rtrification and demtrification. As a
result, in 1987, the “Activated Sludge Model (ASM) No. 17 was
presented [Henze et al, 1987a, b]. Though the model has been mod-
ified and extended, 1t 1s still used widely because of its detailed de-
scription of biomass growth and removal of organic compounds.
This model divided organic and morgamc materials related with
wastewater treatment mto 13 components and used ther mass bal-
ances. All components in the model are expressed n the matrix fomn.
The meanmg of components, stoichiometric parameters, chemical
reaction equation etc. are described in detail in the matrix. Compo-
nents are largely classified mto carbonaceous compounds and mtro-
genous compounds, and each s divided again into readily biode-
gradable and slowly biodegradable. ASM No. 1 has four important
reactions: the growth of biomass (implies oxidation of carbon com-
pounds and mitrification/derntrification), decay of biomass, and am-
monification of organic mtrogen and hydrolysis of particulate or-
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Fig. 2. Schematic diagram of JAWQ ASM No. 1.
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gamc matter. The main emnphasis of the model 1s the biological reac-
tor, while the settler dynamics 1s treated comperatively superficially.
Meain reactions and inter-relationship of components are illustrated
mFig. 2.

Recently, several papers reporting research on biological mutri-
ent removal (BNR) process modeling have been published Gujer
et al. [1995] extennded ASM No. 1 for carbon and mitrogen removal
to include the modeling of biological phosphorus removal. The re-
sulting ASM No. 2 ncluded 17 processes and 17 components. Typ-
1cal values of its 40 kinetic parameters were listed, although they
have not been venfied from experimental data. In a companion pa-
per, procedures of wastewater and biomass charactenization for use
with ASM No. 2 have been presented [Henze et al, 1995]. Mino
et al [1995] modified ASM No. 2 to include the denitrification ca-
pability of phosphorus-accunulating orgarisms (PAO) by mclud-
ng two new processes: anoxic polyphosphate storage and anoxic
growth of PAO. The modified model improved the simulation of
phosphates m the anoxic zone of a BNR plant. ASM No. 2 was also
modified to be consistent with anoxic P-uptake by mcluding the
process of demtrification by PAO wsmg intermnal polyhydroxyal-
kanoates (PHAs) [Issacs et al.,, 1995a]. Based on pilot-plant phos-
phate and nitrate data, 46 model parameters and 19 initial con-
centrations were 1dentified after about 2,000 tterations of a random
search algorithm, although most parameters were insensitive to the
data.

Occasiomally, the model structure of ASM No. 1, 2 and so on
requires very complex estimation algorithms and it is hard to iden-
tify their mumerous parameters. Jeppsson and Olsson [1993] pro-
posed a reduced order model for on-line parameter identification
of WWTP. With a simplified Extended Kalman Filter, 8 basic reac-
tions and 13 components w1 IAWQ ASM No. 1 were reduced to
4 reactions and 10 components. Tt has been veritied against ASM
No. 1 to investigate whether it incorporates the important dynamic
phenomena in the actual time scales or not. More procedures for
validation and details can be found in the literature [Jeppsson, 1996].
1-2. Secondary Settler Model

Tn most previous models, the clarifier has been treated as a pure
concentrator, sometimes with time delay. More structured models
that mcorporate both the clarification and the thickeming phenom-
ena have been presented However, the dependence of the settling
parameters on the biological conditions of the sludge 1s not straight-
forward. Tt 1 usually assumed that there is no biclogical activity out-
side the bioreactor. There are, however, indications that some bio-
degradation takes place i the settler. A secondary seftler separates
the biomass from the treated wastewater and is a key mechanism
n operation of biological WWTP. The model of the settler can be
divided mto four categories: first, the most general, multi-layer mod-
el which considers the settler as a number, n, of horizontal slices
(layers) with the feed mto slice m. Each slice has a bulk movement
of liquid and solids either upwards (above the feed) or downwards
(below the feed). Solids settle mnto the slice from the above and settle
out of the slice to the below. Second is the settling flux model that
uses settling velocity due to gravity force. However, there are some
limitations m that it has a problem of determimng constants m the
model and it 1s applicable to the region of zone settling. Third, the
clarification model, describes the effluent concentration by using a
double-expenential form of the flux model. Fourth, the compart-
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ment model 15 a simpler approach that considers two well-mixed
compartments, orie above and one below the sludge blanket level.

Keinath et al. [1977] obtamned a settling velocity model that sat-
1sfied the solid flux model and the underflow condition of that: the
downward solid flux 1s the sum of the gravity settlmg flux and the
solid flux due to the bulk movement of the liqud n a continuous
flow settler. Vitasovic [1986] developed a more rigorous analysis
of dynamics of the settler. Vitasovics model predicts the solids con-
centration profile in the settler by dividing it mto 10 layers of con-
startt thickness and by performing a solid balence around each layer.
However, the model is reasonable only in the hindered settling con-
dition due to limitation of its settling velocity model. Takéacs et al
[1991] classified the settling characteristics mto four regions and sug-
gested a double exponential settling velocity model in order to take
all kinds of sedimentation mnto account. Dupont and Henze [1992]
developed a model for the secondary clarifier based on the general
flux theory that can be used in combination with the activated sludge
model to form a complete dynamic WWTP In addition to the flux
model, it includes a simple and purely empirical model for predict-
mg the contents of particulate components m the effluent. Nowa-
days, a more sophisticated model has been developed. Diehl and
Jeppsson [1998] proposed a new one-dimensional model based on
the theory of nonlinear partial different equations and constructed
an entire WWTP model combining the settler model with ASM
No. 1.

2. Data-driven Modeling

To date, the most successful model and the industrial standard 1s
the mechanical model {ASM No. 1, No. 2 and No. 3). However,
the model structure requires a high dimension and the model pos-
sesses a large number of kinetic and stoichiometric parameters. Some
substrate components and model parameters are difficult to esti-
mate, partly due to the limitation of available measurement tech-
niques. And some processes of ASM No. 1, 2 and 3 are theoretical
in nature and rate equations are difficult. Any particular plant has
its own process environmental conditions and process operations,
which make 1t difficult to develop an accurate general model. It is
not easy or desirable to spend considerable time and effort to simu-
late peculiarities and non-idealities of a process using ASM mod-
els. As a result, the actual application of such a complex model to
process control and operational strategies is limited.

In a black box modelmg strategy, the model development 1s mam-
ly driven by measured data from the actual system that has to be
modeled. Tts main advantage is the fact that, within a reasonable
amourt of time, one can obtain a highly accurate mathematical mod-
el without detailed knowledge of a system. The applicability of black
box modeling has greatly increased because of the availability of
mathematical concepts that can approximate any contnuous non-
linear function, such as artificial neural networks (ANN), fuzzy and
genetic algorithms (GA).

Capodaglio et al. [1991] used neural networks to model the sludge
volume index (SVI) in order to model forecast sludge bulking, and
Tyagi and Du [1992] predicted the effect of heavy metals on the
perfommance of WWTP Su and McAvoy [1992] used a parallel train-
g approach of recurrent neural networks to predict biological re-
moval efficiency in the wastewater treatment process. Boger [1992]
reviewed various applications of neural networks i the field of waste-
water engmeering and discussed both advantages and hmitations
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of neural approach. Roche et al. [1995] developed a secondary clar-
ifier model that predicted the retum sludge concentration based on
the settling hydraulic retertion time (HRT) by using a shifted power
model whose coefficients were comrelated to the incoming suspended
solid (SS) and the sludge volume mdex (SVI). Hick and Kohne
[1996] estimated the wastewater process parameters using neural
networks. A simplified hybrid neural net approach was applied to
the modehng and subsequent analysis of a chemical WWTP to re-
duce the occurrences of overflow m the clarifier caused by fila-
mentous bulking and thereby increase wastewater treatment capac-
ity [Miller, 1997]. Hamoda et al [1999] exammed plant dynamics
and modeling techmques with emphasis on the digital computing
technology of ANN. Lee and Park [1999] used the ANN model to
estimate the nutrient dynamics mn a sequentially operated batch reac-
tor. Yoo et al. [2000] predicted and classified the state of the sec-
ondary settler usmg Kalman filtering and neural networks. Gontar-
ski et al. [2000] simulated and predicted an mndustrial WWTP usmg
ANN. Recently, neural networks have been successfully applied to
biological WWTP as well as chemical mdustries summanzed com-
prehensively by Himmelblau [2000].

However, a conventional ANN model suffers from the drawback
that 1t 18 synthesized on the available data, without detailed knowl-
edge of the underlyng principles. When the data are sparse and noisy,
such an empirical black box model may be madequate and maccu-
rate for prediction and extrapolation because it possesses no physi-
cal basis. Furthermore, the ability to learn nonparametric approxi-
mation can lead to over-fittmg of the noise as well as the underly-
ing function. Therefore, it often becomes necessary to implement.
some form of empirical or semiempirical modeling to develop a
system representation suitable for further analyses. The potential
advantages of hybrid modeling approaches relative to a fully em-
pirical approach mclude a reduced demand on experimental data
and more reliable extrapolation. Consequerntly, the alternative of
using a hybrid model that integrates both a mecharnical model and
ANN appear promising. The senal configurations used neural net-
works to represent poorly defined terms in the first-principle model
(ASM model). For example, matenal balance on the biological reac-
tor might yield a set of ordinary differential equations including a
number of poorly defined kinetic terms (reaction rates or kinetic
parameters of ASM model). In a senal configuration one or more
black boxes would replace these “unknown” expressions. Thus,
the neural networks provide intermediate values necessary for tiume
series prediction with the mechamcal models represented schemat-
ically n Fig. 3(a). In parallel arrangements, a dynamic model of the
wastewater treatment system exists, and the effort is to construct
an empiical error model compensatmg for its fallacies or errors.
For prediction of the dynamic behavior the outputs of the simple
dynamic model are biased by the outputs of the error medel, as in
Fig. 3(b). Fig. 3 represents a hybrid model configuration incorpo-
ratng prior knowledge mto a data-based model with serial hybrid
model and parallel hybrid model.

Cote et al. [1995] demonstrated that coupling of mechenic and
ANN models resulted in improved ammoma and suspended solid
prediction. Dissolved oxygen (DO) prediction was biased since er-
roneous measurements due to DO probe limitations were not fol-
lowed closely by the ANN model. Zhao et al [1997] suggested a
hybrid model consisting of a simplified process model and a neural
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Fig. 3. Hybrid model configuration incorporating prior knowledge
into a data based model (a) serial hybrid model (b) parallel
hybrid model.

network (residual model) for developing a dynamic model of a se-
quence batch reactor system. Can et al. [1997] reviewed efficient
model development strategies for bioprocesses based on neural net-
work in macrascopic balances. They compared the serial and paral-
lel gray box models that use avalable knowledge represented n
the macroscopic balances and combined naturally with neural net-
works. Zhao et al. [1999] modeled the nutnient dynarmics usmg sim-
plified ASM?2 and neural network in a sequence batch reactor. An-
derson et al. [2000] used sequential and parallel hybrid models based
on the first-principles knowledge of WWTP, which build as much
prior knowledge as available and then use empirical components
such as newral networks. Lee [2000] applied the gray box model-
mg approach to the coke wastewater treatment plant.
3. Simulation Benchmark

Meny control strategies have been proposed m the hiterature but
their evaluation and comparison, either in real-hfe applications or
simulations, 1s difficult. This is partly due to the variability of the
wfluent, the complexity of the biological and hydrodynamic phe-
nomena, the large range of time constants (from a few minutes to
several days, even weeks), and the lack of steandard evaluation crite-
ria. Different regions have different effluent requirements as well
as different cost levels. To enhance the acceptance of imovative
cortrol strategies, the evaluation should be based on a ngorous meth-
odology mcluding a simulation model, plart layout, controllers, per-
formance critenia and test procedures. To this end, there has been a
recent effort to develop a standardized simulation protocol - “s#u-
lation benchmark [COST-624, 1997]. The COST 682 Working
Group No. 2 hes developed a benchmark for evaluation of control
strategies by simulation. The benchmark is a simulation environ-
ment defining a plant layout, a simulation model, mfluent loads,
test procedures and evaluation criteria. For each of these iterns, com-
promises were pursued to combine plammess with realism and ac-
cepted standards.

A relatively simple layout was selected for the simulation bench-
mark (see Fig. 4). It combines itrification with predenitrification,
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Fig. 4. A layout of simulation benchmark.

which isused most commonly for nitrogen removal The plant, which
was designed to treat an average flow of 20,000 m*d”, consists of a
S-compartment bioreactor and a secondary settler. To increase the
acceptability of the results, two intemmationally accepted process
models were chosen. The biological process is modeled by ASM
No. 1 [Henze et al, 1987]. The behavior of the secondary settler is
modeled by a double exponential settling velocity model, called
Takdes’ model, with a 10-layer secondary seftling tank [Takdcs et
al, 1991). Simulated influent data are available m three two-week
files derived from real operating data. The files were generated to
simulate three weather situations representing dry weather, stormy
weather {dry weaher+two storm events), and rainy weather (dry
weather+long rain period). Each of the data contains 14 days of
influent data at 15 minute sampling mtervals. The full benchmark
model includes approximately 150 nonlinear differential equations;
the complete model can be found on a website (http//www.ensic.u-
nancy.fi/fCOSTWWTP).

A basic control strategy is proposed to validate the user’s simu-
lation code. That is, prior to defining and testing a new control strat-
egy users must validate their software by implementmg a prede-
fined control strategy. Once the user has validated the simulation
code, any control strategy can be applied and the performance can
be evaluaed according to certain criteria [Alex et al, 1999; Pons et
al., 1999; Copp et al, 2000; Yoo, 2000; Cho, 2001].

CONTROL

Wastewater treaiment plants are large non-linear systems subject
to perturbations m flow and load, together with uncertainties con-
ceming the composition of the mcoming wastewater: Nevertheless,
these plants have to be operated continuously, meeting stricter and
stricter regulations. And effluent standards will become tighter than
now. There are even indications in some countries that tomorrow’s
regulations must be met on the basis of spot checks, not monthly
average. In this situation, advanced control is not the answer, but it
can help.

But the behavior of biological processes occurring in a bioreac-
tor has a complexity unparalleled m the chemical or engineering
industry. Consequently, its prediction from information @bout the
environmental conditions is extremely difficult. The number of reac-
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tions and organism species that are involved in the system may be
very large. An accurate description of such complex systems can
therefore result in quite mvolved models, which may not be useful
from a control-engineermg viewpomt. We can summarize some of
the major problems in general: Lacking process knowledge (vara-
tions of microorganism characteristics, hydrolysis, flocculation, set-
tling characteristics), large variations of mfluent load and uncer-
tamties in the influent composition {depending on weather, indus-
tnial discharges and toxic material, etc.), muliivariable with many
cross-couplings, several different unit processes mterconnected by
various intermnal feedback, macroscopic modeling of microscopic
reaction, highly nonlinear processes, non-stationary processes, time
varyg process parameters (due to the adaptive behavior of living
organisms to various environmental conditions), stiff dynamics (a
wide range of time constants, varying from a few minute to several
days or weeks), practically non-controllable and highly varable pro-
cess inputs, and lack of adequate measuring techniques. In particu-
lar; from their input/output behavior, these processes can appear to
be highly stable until gross process failure occurs. On the other hand,
no significant input disturbance excites any significant output re-
sponse. Whereas, a very significant response can occur in the ab-
sence of any obvious motivating input disturbances. By these di-
stinctive features, WWTP has challenged control engineers [Jepps-
son, 1996; Lindberg, 1997; Islam et al, 1999].

Several advanced control strategies had been developed previ-
ously, e.g. sliding mode control [Derdiyok and Levent, 2000], but
few of them are reported as appropriate. Olsson et al [1989] listed
the essential variables m the process and their measurement fre-
quency. Important types of measurements and manipulated vari-
ables are listed in Table 1.

1. Dissolved Oxygen Control

Dissolved oxygen (DO) control does not require any in-depth
knowledge of the microbial dynamics. Therefore, a traditional PI
controller or on/off controller has been widely used [Flanagan et
al., 1977] and there have been extensive experiences of DO con-
trol with feed-back controller [Briggs et al, 1967; Wells, 1979; Ko
et al., 1982; Stephenson, 1985; Rundqwist, 1986; Holmberg et al.,
1989; Carlsson et al., 1994; Lindberg and Carlsson, 1996a]. De-
spite the straightforward task of DO dynamics, several difficulties
are involved. First, DO dynamics contain both nonlinear and time
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Table 1. Variables for measurement and manipulation

Measurement variables

Manipulated variables

Flow rates in different plant units
BOD, COD, TOC

Phosphorus fractions

Nitrogen in ammenia, nitrite and nitrate
pH

Suspended solids in different units
Alkalinity

Temperature

Dissclved oxygen in different locations
Air flow rates and air pressure
Sludgelevels

Sludge flow rates

Gas flow rates and temperatures
Respiration rate

Air flow rate and its spatial distribution
Return sludge flow rate

Waste sludge flow rate

Influent flow rate

Additional carbon source flow rate
Chemical dosage pumping rate
Feeding points for step feed control

varymg properties naturally. From long tune constants and random
influent disturbances, any tuning of a conventional controller be-
comes tedious. Therefore, a self-tuming controller was mmplemertted
m a full scale plant to examine the potential of adaptive control n
WWTP, where DO concentration is kept very close to its set-point
under varyimg operatmg conditions [Diaz et al,, 1995]. Olsson [1992]
gave an example of cascade control concept for DO control Lee et
al. [1998a] suggested a discrete type autotuned PT controller using
an auto-regressive exogenous model to descnibe DO dynamics and
Yoo et al. [2001] applied a closed-loop autotuning algorithm for
the PID controller tunmng of DO control m a full-scale coke waste-
water treatmentt plant. Recently, Gomes and Menawat [2000] de-
veloped a Model-Based Geometric Control Algorithm (MGA) for
controlling DO m fermentation processes.

2. Sludge Inventory Control

There are basically two controlled variables for the sludge m-
ventory n the biological WWTP: the waste activated sludge (WAS)
flow rate and retumed activated studge (RAS) flow rate. WAS flow
rate control controls the total sludge mass m the system and the sludge
retention time (SRT) can be kept at a deswed level The traditional
sludge age formula s a steady state calculation and does not take
short term fluctuations mto consideration Therefore, 1t should be
emphasized that the SRT calculation has to be based on the sludge
concentration and flow rates averaged over several days.

The sludge distribution within the system is controlled by the
step feed flow distribution or the RAS flow rate. The former can
redistribute the sludge dynamically within the aeration basin while
the latter can shuffle sludge between the settler and the aeration basm.
Meany contradictory control schemes are made for return sludge flow.
The recycle flow rate can only redistribute sludge between the set-
tler and the aeration basin, while the total sludge mass of the sys-
tem remains the same. Two most common practical control princi-
ples are either constant RAS flow rate or mfluent flow ratio con-
trol. The mfluent flow ratio control appears to have several difficul-
ties and 15 seldom used comsistently. The constant RAS flow strat-
egy is often found to be better empirically.

Cakicl and Bayramoglu [1995] miroduced a control method of
sludge age and mixed liquor suspended solids (ML SS) concentra-
tion by adpusting the sludge recycle rate and wastage flow rate, re-

spectively. For MLSS control, a conventional PID controller was
used in RAS flow rate manipulation, and the sludge in the second-
ary clarifier was wasted using a microbial mass balance formula m
the the sludge age. Nejjart et al. [1999] proposed a norrlinear ad-
aptive feedback-linearizing controller for a biclogical WWTP based
on the non-linear model of the process and combmed with a jomt
observer and estumator which plays a role of the software sensor
for on-line estimation of biological states and parameter variables
of mterest.
3. Respirometry-based Control

Resprrometry 15 the measurement and interpretation of the re-
spiration rate of activated sludge. The respiration rate 1s the amount
of oxygen consumed by the microorganisms measured per unit vol-
ume and unit time. It reflects two of the most important biochemi-
cal processes m WWTP, biomass growth and substrate consump-
tion. Respirometry has been the subject of meny studies and a num-
ber of measurement techriques and mstruments have been devel-
oped.

Substrate utihzation in an aerobic environment requires Oxygen.
A portion of the consumed substrate 15 oxidized to provide the en-
ergy required to reorganize, and the remainder of the substrate mol-
ecules 1s converted to new bactenal cell mass [Spenjers et al., 1996].
The rate of oxygen consumption can be measured relatively easily
by measuring physical variables like DO or carbonaceous material
by heterotrophic bacteria and the oxidation of ammora mtrogen to
nitrate nitrogen by autotrophic bacteria. Nitrification often accounts
for approximately 40% of the total oxygen demand. The substrates
have various biodegradation kinetics depending on their mherent
characteristics and the responsible sludge condition, eg., mineral-
1zation of carbonaceous compounds differs from that of mitrogenous
substrates, and in the carbonaceous matters the same degradation
pattern 1s not shown according to therr molecular structures. Called
the bisubstrates hypothess, 1t was mtroduced first n the UCT (Uru-
versity of Cape Town) model [Dold et al,, 1991]. According to the
hypothesis, BOD m the mfluent waste stream can be regarded as
two fractions: one 13 readily biodegradable substrate (RBS), which
has a simple molecular structure and 1s able to pass through the cell
wall immediately for microbial metabolism, and the other 1s slowly
biodegradable substrate (SBS), which was assimilated in a form of
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RBS through extracellular enzymatic reaction, called hydrolysis
[Ekama and Marais, 1979].

Since the respiration rate is directly linked to the growth of bacte-
ria and consumed substrates, it has been used to analyze microbial
conditions of WWTP i a form of respirogram that 13 a graphical
description of respiration rate as a function of time [Kappeler and
Gujer, 1992; Spemyjers and Keesmar, 1994; Sparyjers and Vanrol-
leghem, 1995; Docham et al., 1998; Vanrolleghem et al., 1995, 1998].

Furthermore, the respiration rate can be decomposed mto exog-
enous and endogenous parts, nn which thus comes from an adenos-
ne tri-phosphate (ATP) oxidation in microorganisms and that from
the external substrate oxidation. The change of the rate relies main-
ly on its exogenous part since the endogenous respiration rate sus-
tains a constant level in a short time experiment [Kong et al., 1996].
Herce, the analysis of exogenous respiration rate has been used for
the identification of the characteristics of substrates and microor-
ganisms [Brower et al., 1998; Spanjers et al,, 1999)].

4. Advanced Nutrient Removal Control

Nitrogen and phosphorus are the principal nutrients of concem
m treated wastewater discharges. Discharges contamng nitrogen
and phosphorus may accelerate the eutrophication of lakes and re-
servoirs and may stimulate the growth of algae and rooted aquatic
plents m shallow streams. Sigmificant concentrations of nitrogen in
the treated effluents may also have other adverse effects including
DO depletion in receiving waters, exhibiting toxicity toward aquatic
life, affecting chlorme dismfection efficiency, presenting a public
health hazard, and affecting the suitability of wastewater for reuse.
Therefore, the control of mitrogen and phosphorus 13 becoming in-
creasingly important in water quality management and in the design
of WWTP [Lee et al., 1998b; Yoo, 2000; Cho, 2001].

4-1. Model-based Control

The development of advanced nutrient analyzers has made it pos-
sible to infroduce better control. In biological nitrogen and phos-
phorus removal, many factors influence the reaction rates, such as
the amount of microorganisms, temperature, substrate composition
and concentraion. There are only a few ways to influence the m-
trification/denitrification rates in practice: One 1is to adjust the DO
set point for ammonia removal in the aeration zone; another 13 to
control the desage of external carbon for mitrate removal. Phospho-
rus can be removed by controlling the dosage of chemicals for phos-
phorus precipitation.

Many papers have dealt with the problem of removal of nitro-
gen compound. Henze [1991] discussed capabilities of biological
nitrogen removal process for wastewater treatment and suggested
that the most economic configuration for nitrogen removal should
be the predenitrification system. Recent approaches to the problem. of
nitrate removal by external carbon source can be found. Lindberg
and Carlsson [1996b] proposed an adaptive control strategy using
auto-regressive moving average with exogenous mput (ARMAX)
model with recursive least square method for parameter estimation.
Yuan et al. [1997] suggested various control strategies using pro-
portional feedback controller with some assumption end modifica-
tion of ASM No. 1. To design the controller and determine the op-
timal set pont, they added the dynamics of an external carbon source
to the demtrification model in ASM No. 1. Barros and Carlsson
[1998] developed an iterative pole placement design method of a
nitrate controller. The closed-loop model of the process could be

July, 2001

obtaned from mput/output data during iterative design procedure.
4-2. Multivariable Control

Above previous researches focused on single input single output
(SISO) process control. Some examples of multivariable control of
the wastewater treatiment process can be found n Bastin and Doch-
amn [1990], Dochain and Perrier [1993], and so on. Lindberg [1997,
1998] suggested multivarniable modeling and control strategy of nu-
trient removal in WWTP using numerical algorithms for subspace
state space system identification (N4SID) that can identify multi-
variable processes [Van Overschee and De Moor, 1996]. From the
multi-mput multi-output (MIMO) process model, Lindberg [1997]
developed a linear quadratic (LQ) controller with integration of feed-
forward and feedback controller. Steffens and Lant [1999] evaluated
several multivariable model-based control algorithms, such as linear
quadratic controller (LQC), dynamic matrix controller (DMC) and
nonlinear predictive controller (NPC) for controlling nitrogen re-
moval in WWTP and compared that with a conventional PI con-
troller of the SISO system. They concluded that model-based con-
trol algorithms could provide tight control of nitrogen compound
removal and offer sigmficant benefits in terms of deferred capital
expenditure.

On the other hand, Tsaacs and Henze [1995] and Isaacs et al.
[1995] dealt with the problem of nutrient removal control mn an al-
ternating nitrification/denitrification process. Lukasse et al. [1998]
developed an aeration strategy for optimal nitrogen removal in al-
ternatmg mitnification/denitrification process. First, optimal control
theory was applied to ASM No. 1, and then, from the result of the
first simulation, a simple discrete model which could replace com-
plex ASM No. 1 was created to design a receding horizon optimal
controller. Tt revealed that it is impossible to control both ammonia
and mitrate to their set pomts as their consumptiony/production 1s com-
pletely coupled.

PARAMETER AND STATE ESTIMATION

As previously described, WWTP 1s a complex dynamic process
mfluenced by many uncertain factors, such as loading and biomass
composition. Successful process control requires good knowledge
of process variables such as the most mfluential kinetic and stoichi-
ometric parameters and resulting biomass composition. Model pa-
rameters and state estimation are based on available noisy process
measurements. The parameters of biological models usually vary
with the environmental conditions and need to be updated frequently
through on-line and off-line algorithms. Tracking of parameters val-
ues 1s also useful for detection of toxic mnput and on-line sensor fail-
ures and sudden parameter changes. The need of state estimation
arises in comnection to state-feedback control schemes. Process var-
iables that are not momitored due to unavailable or expensive sen-
sors can be estimated or reconstructed numerically. Even in the case
where process measurements are available, estimation algorithms
are still necessary to optimally weigh the uncertainty of the process
meodel with measurement accuracy and generate a more accurate
state variable estimate [Bastin and Dochain, 1990; Kabouris, 1994].

It 1s well known that particular problems of model identification
m WWTP mvolve the highly nonlinear nature of the dynamics, the
small sensitivity of the state variables and the inability of measur-
g individual process variables reliably.
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Goto and Andrew [1985] presented on-line estimation of oxy-
gen uptake rate from DO mass balance in a complete mixed aera-
tion basin, neglecting DO time derivative and measuring air and
water flowrates and DO concentration. Howell and Sodipo [1985]
estimated on-line respiration rate and aeration efficiency by a factor-
1zed Kalman filter algorithm. Olsson and Chapmen [1985] used the
Meaximum Likelhood method to estimate the parameters of a time
mvariant linear stochastic difference equation describing clarifica-
tion of effluent solid dynamics. I the case of tine-varying param-
eters, they used the Extended Least Square method in modeling of
the effluent solids response of a pilot scale settler Holmberg and
Olsson [1989] smnultaneously estimated OUR and aeration coeffi-
ciencies usmg Kalman filter method. Marsili-Libelli [1990] designed
and evaluated a real-time estumator both for oxygen uptake rate
and for oxygen transfer rate coefficients. Ayesa et al. [1991] used
an Extended Kalman filter (EKF) algorithin to simultaneously esti-
mate the states and parameters of ASM No. 1 for mtrifyimg WWTE,
including a selector reactor, and Larrea et al. [1992] attempted the
simultaneous estimation of mne model parameters. Werjer et al.
[1996] reviewed the recent literature on calibration strategies and
methods for assessing parameter identifiability of ASM 1 and pre-
sented the 1dentifiability results for full-scale plants by a combmed
analysis of the parameter sensitivity and the Fisher information matrix.

Recently, Kabowrss and Georgakakos [1996a, b, ¢] reviewed the
parameter and state estunation of WW'TP about model develop-
ment, application and on-line estimation. Tenno and Uronen [1995,
1996] miroduced a stochastic model based on an ASM model and
the outlet gas formation description. Suescun et al. [1998] pro-
posed a siunultaneous estimation of the volumetric mass transfer
coefficient and oxygen uptake rate and validated the expermnerntal
results in a contimuous pilot-scale plant. Jose et al. [1999] proposed
a neural network-besed mferential sensor for phenol momnitoring
using on-lme biomess concentration by spectrophotometry, where
the network was built with wavelets as a basis function and the
adaptive algorithm for the weights was based on a Lyapunov stabil-
ity analysis. Predicted output of the network showed a good agree-
ment with expermmental data over farly broad ranges of mlet con-
centration and dilution rate step changes. Assis and Filho [2000] re-
viewed the soft sensor technologies for on-line bioreactor state esti-
mationy, such as adaptive observer, filtering techmques and artificial
neural networks and predicted trends on on-line software based state
estimation. Yoo and Lee [2001] suggested and expenmented with
a supervisary control based on simultaneous process identification
and in-sifu estimation of respiration rate in a full-scale wastewater
treatment plant.

EXPERT SYSTEM

An expert system provides expert solutions to problems m a spe-
cific domain, but 1t 1s lmited by the mnformation contamed n its
database. Hence, 1t 18 up to the knowledge engineer and the expert
to work together to gather the correct mformation and mference
rules contained in the knowledge base.

A typical expert system consists of two separate entities: a know]-
edge base and a control system. The knowledge base contains (1)
a listing of rules that solve the problems of the given domain, (2)
specific data, or the facts, conclusions, and other relevant mforma-

tion, and (3) a knowledge base editor that accesses the explanation
subsystem and helps the programmer locate bugs n the program
performance. It may also assist 1 adding new knowledge, mam-
tarring correct rule syntax, and checking consistency on an updated
knowledge base. The confrol system generally has (1) a user mter-
face which makes access to the expert system more comfortable
for humans and hides much of the system complexity, (2) an ex-
planation subsystern that allows the program to explamn its reason-
mg to the user, such as justifications for the systems conclusions,
and why the system needs a particular piece of data, and (3) an m-
ference engire, or the mterpreter of the knowledge base. It applies
the knowledge to the solution of the actual problems.

Stephan and Anthory [1991] designed an expert systermn for water
treatment plants and applied it to a plant m New York Watanabe
et al. [1993] proposed intelligent operation support system (IOSS)
for bulking prediction and control for WWTP with on-line process
data and 1mage signals on microbes; the data and signals come from
a submerged high resolution microscope. In their research, the rules
of the expert system were produced from lustorical data by usig
artificial neural networks. Wang [1996] used the decision-support-
mg system (DSS) m city water supply. DSS was designed to op-
erate with an SCADA system cormected to a telephone line. He sug-
gested a triple hierarchy to infer the result of the system. The first
hierarchy 1s used for data processig, the second 1s for data analy-
sts, and the fimal i for reason driving with the library of knowl-
edge base. Medsker [1996] presented a hybrid intelligent system
with microcomputer and compared 1t to a neural network, expert
system, fuzzy logic, genetic algorithms and case-based reasoning.
He forecasted that the microcomputer-based hybnd mtelligent system
became more effective and economical. Baeza et al. [1999] sug-
gested a real time expert system (RTES) for the supervision and con-
trol of WWTP for removal both organic matter and nutrient. He
used PLC for process control and G2™ for RTES development.
RTES was designed to actuate as the master in a supervisory set-
poit control scheme and it is based on a distributed architecture.
The method was implemented in WWTP for 600 days, and excel-
lent performence wes reported to manage the process m spite of
strong disturbances.

MONITORING AND DIAGNOSIS

Process monitoring of operating performance 1s extremely im-
portant for plant safety and quality maintenance m a process. It is
largely divided into two main approaches such as model-based and
data-based. The former makes mathematical models to identify the
static and dynamic relationships of processes and so 1t 1s useful ifa
process 15 rather simple, but not useful if processes have severe non-
lneanty, ligh dimensionality and complexity. On the contrary, the
latter makes statistical guideline based on historical data in normal
operation conditions, so it 1§ available without process characteris-
tics if there are enough available data.

The monitoring problem largely consists of three sequential parts:
data rectification, detection, and diagnosis. Fig. 5 illustrates the mon-
itoring scheme for the plant. Data rectification means the screening
of available data to remove redundant mformation. Olsson and Ne-
well [1999] defined the detection as a combination of process ob-
servations and measurernents, data analysis and mterpretation to de-
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Fig. 5. Monitoring scheme for the plant.

tect abnormal features or effects and the isolation of faults. Diagno-
sis involves the analysis of effects to identify and rank likely causes.
The advice involves the problem of synthesizing strategies to elimi-
nate the causes and return the process to normal operatmg conditions.

Only a few researchers have been interested in process monitoring
in WWTP. Monitoring in wastewater treatment has mostly focused
on a few key effluent quantiies upon which regulations are enforced.
However, since environmental restrictions are becoming more rigid
nowadays, an mcreased effort for higher efftuent quality 1s required
in the advanced monitoring of plant performance.

Monitoring of WWTP is very important because recovery from
failures 1s tine-consuming and expensive. That is, most of the
changes in biological treatment process are very sluggish when the
process 1s recovered back from a ‘bad’ state to a ‘normal’ state or
back from a ‘bad’ state to a ‘good” state. Therefore, early fault de-
tection and solation in the biological process 1s very important as
corrective action well before a dangerous situation happens. At the
same time discrimination between serious and minor abnormality
is of primary concern. To accomplish these classifications, a reli-
able detection procedure 15 needed. However, few monitoring tech-
niques are available to utilize the large on-line data sets despite the
mereasmg, popularity and decreasmg price of on-line measurement
systems in the field of the wastewater treatment system.

A wastewater treatment plant is a very complex system includ-
ng a great deal of equipment end complex processes. The operators
are under mcreasing regulatory pressure to reduce pollutant levels
n their effluent. One response to this has been the installation of
extensive on-line sampling capable of measuring flow rates, concen-
trations and other variables frequently. Data acquisition systems may
collect a large amount of data, normally tens of process and control
variables, but there are relatively few significant events. Therefore,
the data from all the measurements should be mapped into a sig-
nificant description of the current process. The obtaned data will
give much process information, if only the important and relevant
information can be extracted and interpreted. Not only are there maryy
variables to be considered, but also they are often lighly cross-cor-
related (ie., the measured variables are not independent of one an-
other) and auto-correlated. So, redundancy that vanables carry the
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same mformation at least to some extent is observed. It is desrable
to develop schemes for providing reliable on-line information on
the status of the plant so that early corrective actions may be taken.

Traditionally, statistical process control (SPC) has been used to
monitor a few cuality-related key process signals to detect trends,
outliers and other anomalies. The term “SPC” 1s often confused with
process control. SPC, however, is more related to the process moni-
toring, and therefore the term “statistical process monitoring” (SPM)
1s often used mstead of SPC. Shewhart, cumulative sum (CUSUM)
and exponentially weighted moving average (EWMA) are tradi-
tional unvariate SPC charts. The use of univariate control charts
implicitly assumes that the variables are ndependent and identi-
cally distributed (1id). For this reason, these procedures are of lim-
ited use with high-dimensional multivariate data that are strongly
cross-correlated and auto-correlated, dynamic, multiple tune-scale,
non-stationary and noisy. That is, as the number of variables and
the extent of collinearity increase, the interpretation of these univari-
ate control charts can lead to false conclusions [Rosen, 1998, Tep-
pola, 1999].

Multivaniate statistical process control (MSPC) 1s a possible solu-
tion to dimensionality and collinearity problems. Contrary to univari-
ate techniques, multivariate techniques are more successful solutions
to momitor the process data having severe collnearity and noise.
They contain such methods as principal components analysis (PCA)
or partial least squares (PLS) combined with standard sorts of con-
trol charts. These methods are the basis of the field of chemomet-
rics, which has traditionally been concerned with multivariate an-
alyses 1 chemistry, particularly those of spectroscopy. These have
also been used widely in industrial process monitoring over the past
several decades. PCA and PLS aim to represent a multivariate set
of measwements with a smaller number of varnables. These trans-
formed variables are linear combinations of the original ones. These
methods have been used and extended in various applications [Geladi
and Kowalski, 1986, Johnson and Wichem, 1992; MacGregor et
al,, 1995, Wise and Gallagher, 1996; Chen and McAvoy, 1998, Liu
etal., 2000].

With the use of multivariate data analytical methods, the exten-
sion from univariate to multivariate control charts is very logical.
Because the multivaniate scores are orthogonal mathematically and
they give the optimal summary of measurements and observations,
they are 1deally suited for displaying in control charts [Wikstrém et
al., 1998]. The scores are also more robust to noise than original
variables since they are linearly weighted averages. This allows a
more efficient pattern tracking of the process over time for detect-
g abnormalities and for defining the time when they occur. Mul-
tivaniate control charts have been explained in detail by MacGre-
gor and Kourti [1994].

The multivariate Shewhart charts are constructed simply by plot-
ting the appropriate quantity vs. tme. Those of scores show how
the process evolves over time in the respective principal component.
Meanwhile, a Shewart chart of Hotelling’s T* indicates a summary
of all scores. The multivaniate CUSUM charts are only available
for scares. In these charts cumulative sums of deviations from the
target values are calculated and visualized, then all observation are
used to detect a special evert, rather than only the last observation.
The EWMA charts are used to model process dynamics with mem-
ory and drift They show robust and filtered values through weight-
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ing more heavily to recent than old observations. These three kinds
of control charts only show if the systematic part of an observation
conforms the model. However, if a new type of event occurs and
gives data that are not represented m the traming set, the model will
not fit these new data well and hence leave much of this observa-
tion unmodelled. Therefore, we often use simultaneous scores mon-
itoring and residual tracking (SMART) charts to identify how the
model fits current data well. They represent time series patterns of
model residuals.

Besides the dimensionality and collinearity problems, process data
often consist of many underlymg phenomena that create their own
vanation and scale. The measured signal can be often very messy
because some phenomena mask others. So, 1t 1 hard to observe the
long-term drift of signal such as seasonal fluctuation having low
frequency. In most situations, the objective is to identify transient
phenomena such as faults and disturbances. However, there also
exst applications where the detection of long-term disturbances
such as dnfting and seasonal fluctuations is important. A filtering
approach can give a possible solution for this problem. The ong-
nal data are compressed and analyzed at different scales by using
multresolution analysis [Teppola, 1999]. The corresponding scale
representation shows different phenomena occumnng at different
rates. Mutiresolution analysis enables one not only to show the un-
derlymmg phenomena but also to filter out unwanted and disturbing
phenomena. In addition, proper clustermg methods help one to dis-
criminate different scale events.

Applications of MSPC m the biological process have recently
drawn great interest by a few researchers. Krofta et al. [1995] ap-
plied the analysis techruques for dissolved air flotation. Rosen [1998]
adapted multivanate statistics-based methods to the wastewater treat-
ment monitoring system using simulated and real process data. Van
Dongen and Geuens [1998] illustrated that multivaniate time series
analysis can be a valid alternative of the dynamic modeling in
WWTP. Teppola [1999] used a combined approach of multivanate
techmques, fuzzy and possibilistic clustering, and multiresolution
analysis for wastewater data monitoring. Tomita et al. [2000] ap-
plied multivariate analysis in the smulated WWTP and detected
three groups of vanables characterizing the system.

However, the multivariate statistical analysis method has funda-
mental weak pomnts n the nutnient removal process. The nutrient
removal process is non-stationary, which means that the process
itself changes gradually over time. Wastewater treatment plants are
hardly ever “normally” operated for long periods, and what “nor-
mality” means also changes because of the nonstationarity. So, con-
ventional static PCA 1s not suited for non-stationary process mori-
tonng as it assumes data are 1.1.d and they are obtained from a nor-
mal operating condition for a particular process. This 1s a problem
for developmg statistical control charts as they should be developed
from a set of “normal” operating data.

Issues that need to be addressed, particularly in relation to WWTE,
are the selection and transformation of data, model structure and
samplng intervals. First, to implement dynamic and adaptive data
based models, the methods of selecting and transforming data are
required [Ku et al., 1995]. Ideally, these should demand a mini-
mum of process knowledge. Second, adaptive algorithms for MSPC
show potential for non-stationary processes. While adaptive algo-
rithms have been developed [Dayal and MacGregor, 1997, Qin,

1998; Li et al,, 2000], there has been little research on the problems
of application to industrial processes. Third, the choice of sampling
iterval strongly affects the nature of the data and hence the model.
There 1s a very wide range of dynamics in WWTP. That is, while
some measurements are taken many times per minute, some are
taken only every fifteen minutes. Quality measurements may be
taken once a day or even less frequently (multirate sampling). It
may be possible to block variables sampled at the same frequency
and develop a multi-block model. Another possibility 1s to use a
multiscale model through the use of wavelet transforms [Bakshi,
1998]. In addition, extensions of MSPC to moritor more complex
or batch processes are made with the multiblock PCA, PLS or mul-
tiway PCA, PLS, respectively [MacGregor et al.,, 1994; Nomikos
and MacGregor, 1994)]. These momtoring methods are based on
the traditional statistical analytical approach using Hotelling’s T* or
sum of squared prediction error (SPE or Q statistics). T* and Q sta-
tistics methods provide reliable and correct tools for detecting that
multivariable process has gone out-of-control. However, these meth-
ods do not always work well in WWTP, because they carmot de-
tect any changes in the operating condition if T* and Q are inside
the confidence limits. Therefore, a new momtormg method may be
required that can effectively treat the nonstationarty of the character-
istics of the biological treatment process and diagnose source causes.

Meanwhile, 1t 13 an mmportarnt 1ssue to diagnose the source causes
for abnormal behavior. Chemometric methods such as PCA and PLS
have been utilized for merging detection with diagnosis of source
causes of abnormal situations [Ku et al,, 1995; Raich and Cmnar, 1995,
Chiang et al,, 2000; Russel et al., 2000]. Ku et al. [1995] proposed
a diagnostic method m which the out-of-control observation was
compared to PCA models for known disturbances. Using refine-
ments of statistical disturbances, discriminant analysis then selects
the most likely causes of the current out-of-control condition. Suc-
cessful diagnosis depends on the discrimination ability of these dis-
turbanice models. Raich and Cimar [1995] suggested quantitative tools
that evaluated overlap and similanty between the PCA model and
discriminant analysis in order to diagnose the source causes for ab-
normal behavior. Chiang et al. [2000] compared the fault diagnosis
methods using discnimmant partial least squares (DPLS), Fisher
disecniminant analysis (FDA) and PCA. They showed that FDA and
DPLS are more proficient than PCA for diagnosing faults. Russel
et al. [2000] proposed a fault detection method using canonical var-
1ate analysis and dynamic component enalysis. Recently, Kano et
al. [2000a, b] proposed a new statistical process-monitoring algo-
rithm. Tt 13 based on the idea that a change of operating condition
can be detected by momtonng the distribution of tune-series pro-
cess data because the distribution reflects the corresponding operat-
g condition. However, they did not consider an individual con-
tribution of each transformed constituent m the calculation of dis-
similanty index through normalization. Choi et al. [2001] proposed
a modified dissimilarity measure algorithm to consider the effect
of ndividual transformed variables. This method is used for detect-
ng the existence of disturbances as well as for isolation of kinds of
disturbances through eigenvalue momnitoring.

CONCLUSION

Process system engineering techniques such as modeling, con-
Korean J. Chem. Eng.(Vol. 18, No. 4)
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trol, estimation, expert system, and monitoring and diagnosis sys-
tem m the wastewater treatment plant are sigmficantly under de-
velopment end have given very real economic benefits to be gained.
In this paper, we have reviewed many papers about PSE tech-
niques 1 the field of wastewater treatment plants. Among them,
however, only a few techniques have been reported to work suc-
cessfully i real wastewater treatment plarits, while marufold mon-
ttoring and control strategies have been developed and adopted to
the mechanical, chemical and electronic industries. One of the inher-
ent differences m the wastewater treatment plant and the other phy-
siochemical industries is that the microorganisms, which played an
important role in wastewater treatment process, are living creatures
with various vital forces according to the surrounding conditions.
Therefore, the cell viability should be regarded as an essential factor
for the wastewater treatment process operation because it 1s strongly
correlated with the process performance. One of the possible can-
didate to check the activity of microorganisms is the respirometer
as we discussed in Resprrometry-based control. In addition, the re-
spiration rate has been used for bio-model calibration, toxicant inhi-
bition test, substrate state observation and biokmetic analysis be-
tween biodegradable pollutants and corresponding microbes.

Another further research topic on PSE issues is the design of an
mtegrating operation systerm on wastewater treatment plants. How-
ever, since PSE technologies have bome fruitful results individually,
it is time to consider that a plant-wide operating system should be
developed. Integration of possible PSE techmques can be expected
to play a significant role in management of wastewater treatment
mdustry through reducing operation cost and enthancing the efflu-
ent quality.

In essence, we contend that PSE techniques will be a critical tech-
nology for meeting the wncreasingly strmgent effluent requirements
in the wastewater treatment industry over the next decade.
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